

Shock-Capturing Boussinesq-type Model for Fringing Reef Environment

Volker Roeber & Kwok Fai Cheung

¹Department of Ocean and Resources Engineering University of Hawaii at Manoa

> November 3, 2011 Hilton Waikoloa Village, Kona, Hawai`i

O. H. HINSDALE

1

Outline

- 1. Numerical model: BOSZ
 Theoretical and Numerical Formulation
- 2. Model validation with laboratory data
 - 2D experiments from Oregon State University
 - O 3D experiments from Oregon State University
- 3. Model applications
 - PILOT project, Mokuleia, Oahu, HI
 - Hurricane Ivan, Okaloosa, FL
- 4. Conclusions and Outlook

BOSZ

(Boussinesq model for Ocean and Surf Zones)

Governing Equations

- Conservative Boussinesq-type equations
 - Conservative form of Nwogu's (1993) Boussinesq-type equations

Numerical Scheme

- Explicit, Finite Volume scheme
 - Runge-Kutta time integration, adaptive time step, iteration-free
 - Mass balance at moving boundary
 - 2D reconstruction technique, Riemann solver for wave breaking
 - Robust for energetic breaking waves over irregular bathymetry

Momentum Conservation

• Imbedded conservation laws for sub- and supercritical flows

Parallelization

• OpenMP parallelization for handling of large flow problems

1. BOSZ

Governing Equations

Conservative Boussinesq-type equations

Vector form

 $\mathbf{U}_t + \mathbf{F}(\mathbf{U})_x + \mathbf{G}(\mathbf{U})_y + \mathbf{S}(\mathbf{U}) = 0$

$$\mathbf{F} = \begin{bmatrix} Hu \\ Hu^2 + \frac{1}{2}g\eta^2 + g\eta h \\ Huv \end{bmatrix} \qquad \mathbf{G} = \begin{bmatrix} Hv \\ Hvu \\ Hv^2 + \frac{1}{2}g\eta^2 + g\eta h \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} \psi_C \\ -g\eta h_x - H_t \psi_P + u\psi_C + \tau_1 \\ -g\eta h_y - H_t \psi_Q + v\psi_C + \tau_2 \end{bmatrix}$$

Nonlinear Shallow-Water Equations

Dispersion terms only containing spatial derivatives

$$P = Hu + Hz_{\alpha} \left[0.5z_{\alpha} (u_{xx} + v_{xy}) + (hu)_{xx} + (hv)_{xy} \right]$$
$$Q = Hv + Hz_{\alpha} \left[0.5z_{\alpha} (v_{yy} + u_{xy}) + (hv)_{yy} + (hu)_{xy} \right]$$

Flow velocity from series of one-dimensional systems of equations

2. Validation

Idealized fringing reefs in 2D

Extended reef flat with crest Intermediate to steep fore-reef slope 157.7

Laboratory Facility

Large Wave Flume, Oregon State University

b)

O Resistance Wave Gauge (14) (wg)

Large Wave Flume Wave height: 0.75 m Water depth: 2.50 m A/h: 0.3 Reef slope: 1:12

QuickTime[™] and a H.264 decompressor are needed to see this picture. BOSZ - free surface, 2D reef

BOSZ - validation, 3D reef with cone

Experiment conducted by Dr. Patrick Lynett

BOSZ - free surface, 2D reef

Large Wave Flume Wave height: **0.39** m Water depth: **0.78** m *A/h*: **0.5**

BOSZ - free surface, 3D reef

BOSZ - velocity, 3D reef

	BOSZ
0	OSU data

2. Application

Mokuleia, Oahu, HI

Experiment conducted by Dr. Mark Merrifield & Dr. Janet Becker, UH OCN

Mokuleia, bathymetry

- Nearshore reef with lagoon
- Steep reef slope
- Highly irregular bathymetry
- Energetic breaking waves

BOSZ - free surface, Mokuleia

Hurricane Ivan, Okaloosa, FL

Hurricane Ivan Hs: 6.3 m Tp: 12.6 s Grid: 5 m Large directional spreading

- Gentle sedimentary coast
- Barrier island, lagoon system
- Steep short period waves
- Energetic breaking waves

Wave input: SWAN spectrum

BOSZ - flow depth, velocity, Hurricane Ivan

BOSZ - erosion, velocity, Hurricane Ivan

Maximum Velocity (m/s)

4. Conclusions

- 1. Development of numerical model BOSZ
- Designed for but not limited to fringing reefs
- Robust and computationally efficient
- 2. Model validation
- Model combines shock-capturing and dispersive capabilities
- Works for energetic breaking waves with moving boundary

3. Model applications

- Wave transformation over reefs and continental coasts
- Coastal engineering tool for flood and hazard assessment

More information:

Roeber, V., Cheung, K.F., Kobayashi, M.H., (2010). Shock-capturing Boussinesq-type model for nearshore wave processes. Coastal Engineering, 57, 407-423.

Roeber, V., Cheung, K. F., (2011). Boussinesq-type model for energetic breaking waves in fringing reef environment. Coastal Engineering, in review.