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Question



 

How do you build a fast
 

wave, surge, and run-up hurricane 
environment forecast that is based on high fidelity physics?


 

Deterministic and Stochastic



 

Integrates into forecast frameworks
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Methods



 

Parameterize storm characteristics with track/angle, landfall 
location, central pressure, size, forward speed



 

Apply a Monte Carlo approach based on a large number of 
simulations



 

Develop a data base of response functions using high 
fidelity –

 
high cost models across the parameter set. These 

model runs are pre-run, stored and permanent.



 

Develop a surrogate model approach that produces the 
response functions for the Monte Carlo approach and is 
based on the pre-computed high-fidelity simulations
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Conclusions



 

A probabilistic framework was developed for rapid 
hurricane risk estimation focusing on real time applications 
(during an approaching hurricane)



 

Framework is based on a simplified parametric description 
of hurricane track. It combines high-fidelity model 
simulations (accuracy) along with response surface 
surrogate modeling (efficiency)



 

It facilitates a highly efficient estimation of hurricane risk, 
through a stand-alone applet, and can provide critical 
information for emergency response managers



5 165 W  160 W  155 W  150 W  145 W 

 10 N 

 15 N 

 20 N 

 160 W  158 W  156 W  154 W 

 18 N 

 20 N 

 22 N 

xo

θ

Hurricane 
Characterization



 

Track is described by its 
characteristics during final approach


 

Landfall location xo



 

Angle of approach θ


 

Central pressure cp (hurricane 
intensity)



 

Forward speed vf



 

Radius of maximum winds Rmax



 

History prior to landfall is addressed 
by selecting appropriately the 
hurricane track (based on historical 
data)

x

Foundation of the approach: Simplified 
parameterization of hurricane track

Hawaiian 
Islands
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Hurricane Risk Quantification

Address the uncertainty in x 
through appropriate 
probability models p(x)

x1
x2

p(
x)

[ ( )] ( )
X

R h p d  z x x x

z: output of interest such as (a) significant wave 
height, (b) mean sea level (MSL) or (c) wave 
breakup level (WBL)

h: Risk consequence 
measure ultimately 
defining risk

Hurricane 
Risk
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Hurricane Risk Quantification

Address the uncertainty in x 
through appropriate 
probability models p(x)

x1
x2

p(
x)

[ ( )] ( )
X

R h p d  z x x x

z: output of interest such as (a) significant wave 
height, (b) mean sea level (MSL) or (c) wave 
breakup level (WBL)

h: Risk consequence 
measure ultimately 
defining risk

Hurricane 
Risk

Probability model p(x)

(i) For real time risk estimation (during an approaching hurricane) 
based on the predictions of the National Weather Service

(ii) For long term risk estimation based on historical data for 
characteristics and occurrence rates of hurricanes in the region
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Hurricane Risk Estimation

x1
x2

p(
x)

[ ( )] ( )
X

R h p d  z x x x Hurricane 
Risk

1 [ ( )];     ~ ( )
N

i i
i 1

R h p
N 

  z x x xStochastic 
Simulation

No restriction on the complexity of the model used but requires a 
large number of evaluations, for different hurricane scenarios

Address the uncertainty in x 
through appropriate 
probability models p(x)
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Cone of potential tracks 

Expected hurricane track 

 165 W  160 W  155 W  150 W  145 W 

 10 N 

 15 N 

 20 N 



 

During incoming hurricane 
the National Weather 
Service provides estimates 
for expected track and 
strength characteristics, 
along with prediction errors



 

Goal: provide a fast 
prediction tool that can 
accurately estimate 
hurricane risk as soon as 
these predictions are 
provided 

Current  
hurricane 
location

Real-time Hurricane Risk Estimation
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High Fidelity Model



 

Domain incorporates all Hawaiian 
Islands and north central Pacific Ocean



 

Fully incorporates high resolution 
features, channels, coral reefs and wave 
breaking zones



 

1,590,637 nodes, 3,527,785 elements


 

ADCIRC+SWAN for estimating surge 
and wave action



 

For Run up: Boussinesq modeling along 
one dimensional transects using the 
wave/surge information from 
SWAN/ADCIRC 



 

Very detailed numerical modeling but 
very computationally demanding

•
 

Simulation of each 
hurricane track (4 

days prior to landfall 
and one day after) 

requires 2,000 CPU 
hours



Surrogate Model
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

 

Computational complexity of the adopted numerical models 
imposes a significant challenge for the risk assessment task, 
especially when needed to be performed in real time



 

The solution is to develop a surrogate model to provide a 
simple, approximate input/output relationship, based on 
information from the high fidelity model. The surrogate 
model needs to



 

Be easy to evaluate



 

Provide efficiently information for all
 

outputs of interest



 

Have easy to quantify and adjust accuracy
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 160 W  158 W  156 W  154 W 

 18 N 

 20 N 

 22 N 

Hurricane Risk Estimation



 

Pre-run and store a large suite of

 
basis hurricane scenarios (using 
high-fidelity modeling) that cover 
expected range of future events for


 

Anticipated tracks and landfall 
locations



 

Rest of hurricane characteristics 
(central pressure, forward speed, 
radius of max winds) 



 

Based on basis scenarios predict fast 
and accurately the output for any 
new hurricane scenario through a 
surrogate model. Moving Least 
Squares (MLS) response surfaces 
used for this purpose

Basis hurricane scenarios 
New hurricane scenario 



MLS Response Surface Approximation 
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Response surfaces: Approximate a 
function f(x) through NB
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functions
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MLS Response Surface Approximation 
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Response surfaces: Approximate a function 
f(x) through NB

 

basis functions

Real Surface

Support points

weights

Error over all support 
points

Calculate f(.) in NS

 
support points, and 

use them to select a{.} 
by minimizing a 

weighted square error

14



MLS Response Surface Approximation 
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support 
points, and use them to select 

a{.} by minimizing a 
weighted square error

Real Surface

Support points

Error over all support points

weights

Solution for a{.}
Easy to evaluate (matrix 

manipulation only); 
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functions

Coefficients for approximation 

Response surfaces: Approximate a function 
f(x) through NB

 

basis functions

Calculate f(.) in NS

 

support 
points, and use them to select 

a{.} by minimizing a 
weighted square error

Real Surface

Support points

Error over all support points

weights

Solution for a{.}
Easy to evaluate (matrix 
manipulation only); and 
multiple outputs can be 

simultaneously addressed 
[only augmentation or 

matrices needed]



MLS Response Surface Approximation 
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Response surfaces for quadratic basis functions

•

 

“Moving” 
characteristics of 
response surface 

are extremely 
important for 

efficient 
implementation. 

“Global” surfaces 
will in general 

perform poorly. 
The parameters 

related to 
“moving”

 
characteristics can 

be explicitly 
optimized to 

improve accuracy



Response Surface Optimization

Surrogate 
model accuracy

Case
quadratic basis functions for xo

 

, θ, cp

 

and vf

 

and 
linear for Rm

Full quadratic function 
for all model parameters

Case 1
Optimal 
response 
surface

Case 2
common values 

are used for 
weighting 
function

Case 3
No smart 

prioritization 
when 

interpolating 
within x

Case 4
Sub-optimal response 

surface
(optimal for specific 

basis functions) 

Average error 2.31% 2.82% 4.54 % 2.93%

Different cases considered (for different 
characteristics of the moving lease squares); 

optimal configuration leads to significant 
improvement of average accuracy 18



Prediction Error

ˆi i iz z  

High fidelity 
model output

Response surface 
output

Prediction 
error

How can we explicitly consider 
accuracy in risk estimation?
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Prediction Error

ˆi i iz z  
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p 1E
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  x x

High fidelity model 
output

Response surface 
output

Prediction error
Can statistically characterize and 
incorporate in risk quantification 
framework; zero mean Gaussian 
random variable with standard 

deviation

Points selected for calibration of 
model and estimation of statistics for 

prediction error
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Prediction Error
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High fidelity model 
output

Response surface 
output

Prediction error
Can statistically characterize and 
incorporate in risk quantification 
framework; zero mean Gaussian 
random variable with standard 

deviation

Points selected for calibration of 
model and estimation of statistics for 

prediction error
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Basis Hurricane Scenarios

 165 W  160 W  155 W  150 W  145 W 

 10 N 

 15 N 

 20 N 

Central 
Pressure 
(mbar)

Forward 
Speed 
(knots)

Radius 
of max 
winds 
(km)

940

7.5
30

60

15
30

60

22.5
30

60

955

7.5
30

60

15
30

60

22.5
30

60

970

7.5
30

60

15
30

60

22.5
30

60

120°
150°
180°

210°
240°

Landfall Location 1: 21.3° N 157.85° W

Angle of approach (track) 
For each track 
consider 
variation of rest 
characteristics Considering 

additional 
different 
landfall 

locations:
a suite of >600 
model runs to 
represent the 

variety of 
storms that 

might impact 
Oahu
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Comparison of surrogate modeling

2000 computational hours 
per scenario

0.5 sec per scenario

Comparison of 
significant wave 

height around 
Hawaiian islands
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stochastic simulation
Offline: 

Evaluation of the 
high fidelity 

model, through 
high performance 
computing (store 

in memory all 
information)

Built surrogate 
model based on 

available 
information

23

Real Time Hurricane Risk Evaluation

4

145W

Current 
location of 
hurricane 

165W 160W

10N

15N

20N

Cone of 
potential 
tracks 

Hawaii Islands 

Most probable track 

Expected 
landfall location 

NWS: definition of 
probability distribution for 
hurricane characteristics  p(x)
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i
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N 

  z x
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 165 W  160 W  155 W  150 W  145 W 

 10 N 

 15 N 

 20 N 

Current Cone of potential tracks 

Current expected hurricane track 

Hurricane Risk Estimation



 

Based on surrogate model 
hurricane risk may be efficiently 
calculated



 

As the hurricane gets closer and 
more reliable information is 
available, the evaluation may be 
updated



 

The overall framework provides 
a dynamic and fast evaluation of 
the hurricane risk. This risk may 
be then used to assess 
consequences and decide on 
emergency responses

Current  
hurricane 
location

Previous Cone of potential tracks 

Previous expected hurricane track 



Automated Risk Assessment

High fidelity 
simulation + 

surrogate 
modeling + 

probabilistic 
tools

T
echnology adoption barrier

Risk  Management

There is a significant 
adoption barrier that 

prevents risk managers 
to benefit from the 

develop (advanced) tools



High fidelity 
simulation + 

surrogate 
modeling + 

probabilistic 
tools

Automated Risk Assessment

T
echnology adoption barrier

Risk Assessment tool

Risk  Management

Exploit 
efficiency 

of 
surrogate 

model



HAKOU Prediction Tool



HAKOU Prediction Tool
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Significant Wave Height Output
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Wave Run-up Output
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Conclusions



 

A probabilistic framework was developed for rapid 
hurricane risk estimation focusing on real time applications 
(during an approaching hurricane)



 

Framework is based on a simplified parametric description 
of hurricane track. It combines high-fidelity model 
simulations (accuracy) along with response surface 
surrogate modeling (efficiency)



 

It facilitates a highly efficient estimation of hurricane risk, 
through a stand-alone applet, and can provide critical 
information for emergency response managers
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