Fast Forecast Tool for Hurricane Wave, Surge, and Run-up Inundation in Hawaii

Thomas D. Smith, Jane McKee Smith, Joannes J. Westerink, Andrew B. Kennedy, Alexandros A. Taflanidis, and Kwok Fai Cheung

Motivation

Island communities are vulnerable to tropical storms

- Nowhere to evacuate
- Infrastructure within hazard zone
- Islands Task Force Report (2001)
 - Mainland modeling technology largely unsuitable for islands
- Unique/Important Island Features & Physics
 - Steep slopes
 - Reef roughness
 - Reef flat dynamics (ponding, wave reformation)
 - Importance of waves
 - Growth of infragravity waves

SWIMS Fast Forecasting Approach

- Pre-run storms with high-fidelity models
 - ADCIRC
 - unSWAN
 - BOUSS-1D
- Create database of response

- Develop surrogate model to forecast inundation
 - Deterministic
 - Probabilistic
- Hawaii Hurricane Evacuation Study
 - Interface FFT w/Mass Managers System (MMS)
- Team
 - ERDC, University of Notre Dame, University of Hawaii, and Honolulu District

Conclusions

- High-fidelity, high-resolution models have been used to simulation hundreds of hurricanes
- Database of simulation results can be used to generate deterministic or probabilistic estimates for planning and operations
- Fast Forecasting Tool provides framework for dynamic and fast evaluation of waves, surge, run-up and inundation
- Results available in seconds to minutes rather than hours or days

EQUATIONS

$$\frac{\partial N}{\partial t} + \nabla_{\vec{x}} \cdot \left[\left(\vec{c}_g + \vec{U} \right) N \right] + \frac{\partial c_\theta N}{\partial \theta} + \frac{\partial c_\sigma N}{\partial \sigma} = \frac{S_{tot}}{\sigma}$$

$$\frac{\partial^2 \zeta}{\partial t^2} + \tau_0 \frac{\partial \zeta}{\partial t} + \frac{\partial \tilde{J}_x}{\partial x} + \frac{\partial \tilde{J}_y}{\partial y} - UH \frac{\partial \tau_0}{\partial x} - VH \frac{\partial \tau_0}{\partial y} = 0$$

US Army Corps of Engineers

Coastal and Hydraulics Laboratory - ERDC

Pacific Islands Land-Ocean Typhoon Experiment (PILOT) Surge & Wave Island Modeling Studies (SWIMS)

Objectives:

•Collect coastal processes data under typhoon and high-wave conditions in island environments

 Improve model physics and tool for island application for emergency management and design

Products

- Field data sets:
 - Guam
 - Saipan
 - Oahu, Hawaii
 - St. Croix, VI
- Laboratory Data Sets (2D/3D)
- Model Improvements
- Fast Forecasting Tool

Reef Processes

Storm Selection

Category 4 Storm on Oahu

- Severe damage to air & sea ports
- Island-wide power and communications outages (1 month or longer)
- 80% of homes destroyed
- 650,000 people seeking shelter

Since 1950:

- Nina (1957)
- Dot (1959)
- Iwa (1982)
- Estelle (1986)
- Iniki (1992)

Storm Tracks

•Five base storm tracks from hurricane climatology (NWS)

•Tracks shifted to give different landfall locations

•Tracks and parameters varied to give a matrix of potential storms (bound most possible landfall scenarios)

Storm Scenarios

Base Tracks

- 120,150,180, 210 and 240 degrees
- Central Pressure
 - 940, 955, 970 mb
- Radius of Max Winds
 - 30, 45, 60 km
- Forward Speeds
 - 7.5, 15, 22.5 knots
- 15 Landfall Locations
 - Oahu and Kauai
- 13 Landfall Locations
 - Maui and Hawaii

Wave, Surge, and Run-up Inundation Database

Wave and Surge Prediction (high-fidelity model)

- High-resolution Grid
- SWAN+ADCIRC Wave and Circulation Models
- Validation with Tides and Hurricane Iniki Surge
- Wave Run-up Predictions
 - BOUSS-1D
 - Cross Shore Transects

Wave, Surge and Run-up Inundation Database and Predictions for New Scenarios

- Surrogate Modeling
- Fast Forecast Tool

Grid Domain

- Domain incorporates Hawaiian Islands and north central Pacific Ocean
- Grid resolution ranges from 5,000 m in deepwater to 30 m in the nearshore and on land
- Incorporates high resolution features (channels, coral reefs and wave breaking zones)

Bathymetry

ĬŸĬ

SWAN+ADCIRC Model – Coupled Waves and Currents on Unstructured Grids

- ADCIRC solves for water surface elevations and currents in two dimensions
- SWAN solves the wave action density and is a phase-averaged wave model with wave energy represented by a spectrum
- ADCIRC passes water elevation and currents to SWAN
- SWAN passes wave radiation stresses to ADCIRC
- Models run in parallel on the same grid

Hurricane Iniki (1992)

Hurricane Iniki Water Levels

Storm Atlas

Wave Run-up Analyses

- SWAN+ADCIRC gives wave heights and still water levels nearshore
- Wave Run-up (intermittent wave inundation at the shore) can be dominant in some storms
 - Hundreds of meters inland, several meters more elevation than still water level
 - Large During Hurricane Iniki (6-8m)

Prediction of Output for New Scenario

- Pre-run and store suite of basis hurricane scenarios that cover expected range of future events
- Based on basis scenarios predict the output for any new hurricane scenario (i.e., create a surrogate model)

Basis hurricane scenarios New hurricane scenario

Coastal and Hydraulics Laboratory - ERDC

Graphical User Interface

Run-up and Still Water

Conclusions

- High-fidelity, high-resolution models have been used to simulation hundreds of hurricanes
- Database of simulation results can be used to generate deterministic or probabilistic estimates for planning and operations
- Fast Forecasting Tool provides framework for dynamic and fast evaluation of waves, surge, run-up and inundation
- Results available in seconds to minutes rather than hours or days

QUESTIONS

0 770

.0