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Motivation

Standard scenarios for evaluating wind wave model performance
focus on fetch- or duration-limited growth situations.

In this study we investigate model performance for
(i) initial growth under wind forcing
(ii) a rapid attenuation of the wind forcing.

These diagnostics provide critical tests of the sea state dependence
underpinning the ability of the source terms to respond to changes
in the wind speed.

The model performance is tested against data recorded during
growth and relaxing wind sea conditions (FAIRS).

This is work in progress.




Modeling Overview

Radiative transfer equation (deep water, no currents)

The radiative transfer equation for describing the evolution of the wave height
spectrum F(k) is given by:
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where

e F=F(k, 0) is the directional wave spectrum

® c,is the group velocity

S .=S,+S,+S,is the total source term.

e S. is the atmospheric input spectral source term

e S  is the ‘exact’ nonlinear spectral transfer source term representing nonlinear
wave-wave interactions within the spectrum

e S . is the spectral dissipation rate due primarily to wave breaking



Wind Input Source Function S,

Many variants are in use, based on observations and/or theory. We evaluated several and
settled on a modified version of Janssen (1991) (basis of ECMWF wave forecast model) :

- based on Miles critical layer theory
- tuned to agree with Snyder and Plant empirical observations, but includes sheltering of

wind input to shorter waves to reconcile modeled and observed wind stress

-has a viable spectral distribution for U,, from 6-100 m/s
-Banner and Morison 2010 modified Janssen, further modified to include an flux from the

waves to the atmosphere, when Cis larger than U.
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B(k,0) = T, u(In(p))* /> — 2x(cos(@) - ¢/U)  where I;=1.6 (Janssen (1991) used 1.2).
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Saturation Threshold-based Dissipation Rate S ,,

e based on treating spectral bands as nonlinear wave groups. Uses a low power of the
spectral saturation ratio (~steepness ratio) to simulate observed threshold behaviour
[extension of Alves & Banner (JPO, 2003)]

S4s(k0)=[C *D*(E~81)/By)" +Cy *D*Eyy *k,” 1(6/0,,)" oF (kH)
i >

‘local S/’ ‘non-local S/’
This formulation uses
e normalized azimuthally-integrated saturation:

e measured threshold of the normalized spectral saturation (Banner et al., JPO, 2002)
with a1=2

e tail exponent a2 = 4 to match dissipation to input behavior in the spectral tail
¢ nonlocal dissipation rate component

e coefficient D for the local Sds: non-dimensional and linear in the wind speed to match
to the wind input term.

e C1 and C2 constants



Duration-limited Evolution of Non-dimensional Wave
Energy and Peak Frequency for Winds from 6-100 m/s
(no limiters)
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Model performance for predicting wind stress

(stable to 100 m/s windspeeds — no limiters)
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Lambda(c)

Predicted Variation of A (spectral density of the
breaking crest length per unit area) with Wave Age
for the Dominant Wind Waves for various U1o




Breaking strength b

Predicted Variation of breaking strength b with Wave
Age for the Dominant Wind Waves for various Uio
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FAIRS (2000) Experiment
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Figure 1. Significant wave height (Hs) and wind stress (1) during the FAIRS experiment.
The wind direction was around 300° for most of the observational period. Periods 1
(growing seas) and 3 (mature seas) are of particular interest in this study, during which
the mean wind was measured to be 12 m/s.



Observed Wave Energy decay exponent for FAIRS
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The mean decay exponent for the decay event is 2.3 x 107-5.
This is some 50 times faster than typical swell decay .




Synoptic conditions durinq FAIRS
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Synoptic conditions during FAIRS contd.
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Forecasts of FLIP Sig. Wave height
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Wind Speeds during FLIP sudden wind drop event
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Wind Speed [mfs]
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Is Langmuir turbulence an important source
of the wave energqy dissipation rate in this case?

Langmuir number and water u*during the FAIRS decay event
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LES OCEAN MODEL WITH WAVE EFFECTS
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FAIRS LES EXPERIMENTS

Problem Design

o U, ~ [12 = 2] m/s
e Neutrally stratified layer bounded

below by a stable thermocline
h=-32m

Wave age 1.2 < C,/U, < 8
NO stochastic wave breaking

Craig & Banner (1994) surface breaking parameterization

Process Studies

Uniform surface stress with vortex force and surface breaking
Monochromatic Stokes drift profile

Decaying winds from FAIRS, period day [227.5-281]

Discretization

X, = Yy, = 300m, Z;, = —150m

N, = N, = 256, N, = 256

A, =A,=11Tm,A, =~ [0.5 — 1.5]m
Neteps > 60, 000

v




W-variance in the OBL for Decaying Seas
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LES Calculation of Upper Ocean Dissipation Rate and
Input Energy Flux to Langmuir Turbulence

Total Water dissipation rate &
m3sec3 Energy flux to Langmuir cells Integrated Sds from wave
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Conclusions

 Energy flux to Langmuir cell generation does
not account for the for the significant
observed wave energy dissipation rate.

e current source terms are also unable to
account for this, although we are unsure of
the winds, which we are further investigating.
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