WIND WAVE MODEL PERFORMANCE IN RELAXING WIND SEAS

Russel P. Morison & Michael L. Banner (UNSW) Jose Henrique Alves (NCEP) Peter Sullivan (NCAR)

Motivation

- Standard scenarios for evaluating wind wave model performance focus on fetch- or duration-limited **growth** situations.
- In this study we investigate model performance for
- (i) initial growth under wind forcing
- (ii) a rapid attenuation of the wind forcing.
- These diagnostics provide critical tests of the sea state dependence underpinning the ability of the source terms to respond to changes in the wind speed.
- The model performance is tested against data recorded during growth and relaxing wind sea conditions (FAIRS).
- This is **work in progress.**

<u>Modeling Overview</u>

Radiative transfer equation (deep water, no currents)

The radiative transfer equation for describing the evolution of the wave height spectrum $F(\mathbf{k})$ is given by:

$$\frac{\partial F}{\partial t} + \boldsymbol{c}_{g} \cdot \nabla F = \boldsymbol{S}_{tot}$$

where

- $F=F(k, \theta)$ is the directional wave spectrum
- c_a is the group velocity
- $S_{tot}^{\circ} = S_{in} + S_{nl} + S_{ds}$ is the total source term.
- S_{in} is the atmospheric input spectral source term
- S_{nl} is the <u>'exact'</u> nonlinear spectral transfer source term representing nonlinear wave-wave interactions within the spectrum
- S_{ds} is the spectral dissipation rate due primarily to wave breaking

Wind Input Source Function S_{in}

Many variants are in use, based on observations and/or theory. We evaluated several and settled on a modified version of <u>Janssen (1991)</u> (basis of ECMWF wave forecast model) :

- based on Miles critical layer theory
- tuned to agree with Snyder and Plant empirical observations, but includes sheltering of wind input to shorter waves to reconcile modeled and observed wind stress
 has a viable spectral distribution for U₁₀ from <u>6-100</u> m/s

-Banner and Morison 2010 modified Janssen, further modified to include an flux from the waves to the atmosphere, when C is larger than U.

$$S_{in}(k,\theta) = \alpha(k,\theta) E(k,\theta)$$
.

$$\alpha(\mathbf{k}, \theta) = \varepsilon \,\beta(\mathbf{k}, \theta) \,\omega \left(\mathbf{u}_*^{\text{red}}(\mathbf{k}) \cos\theta / c\right)^2$$

$$\beta(\mathbf{k}, \theta) = J_2 \mu(\ln(\mu))^4 / \kappa^2 - 2\kappa(\cos(\phi) - c/U) \quad \text{where } J_2 = 1.6 \quad (\text{Janssen (1991) used 1.2}).$$

$$\beta(\mathbf{k}, \theta) = 0 \quad \text{for } \mu > 1.$$

$$\mu(k,\theta) = (u_*/c)^2 (gz_0/u_*^2) \exp(J_1\kappa/(u_*\cos\theta/c)^2)$$
$$u_*^{\text{red}}(k_n) = \sqrt{[\tau_{\text{tot}} - \sum_{i=1}^n (\tau_w(i) + \tau_{\text{bw}}(i))]/\rho_{\text{air}}}$$
$$z_0 = \frac{0.01u_*^2}{g} / \sqrt{1 - C_0(\tau_w/\tau)}$$

Saturation Threshold-based Dissipation Rate S_{ds}

• based on treating spectral bands as nonlinear wave groups. Uses a low power of the spectral saturation ratio (~steepness ratio) to simulate observed threshold behaviour [extension of Alves & Banner (JPO, 2003)]

$$S_{ds}(k,\theta) = [C_1 * D * (\widetilde{\sigma} - \widetilde{\sigma}_T)/\widetilde{\sigma}_T)^{a_1} + C_2 * D * E_{tot} * k_p^2] (\sigma/\sigma_m)^{a_2} \omega F(k,\theta)$$

'local S_{ds}'

'non-local S_{ds} '

This formulation uses

- normalized azimuthally-integrated saturation:
- measured threshold of the normalized spectral saturation (Banner et al., JPO, 2002) with a1=2
- tail exponent a₂ = 4 to match dissipation to input behavior in the spectral tail
- nonlocal dissipation rate component
- coefficient D for the local Sds: non-dimensional and linear in the wind speed to match to the wind input term.
- C1 and C2 constants

<u>Duration-limited Evolution of Non-dimensional Wave</u> <u>Energy and Peak Frequency for Winds from 6-100 m/s</u> (no limiters)

<u>Model performance for predicting wind stress</u> (stable to 100 m/s windspeeds – no limiters)

<u>Predicted Variation of Λ (spectral density of the</u> <u>breaking crest length per unit area) with Wave Age</u> <u>for the Dominant Wind Waves for various U10</u>

<u>Predicted Variation of breaking strength b with Wave</u> <u>Age for the Dominant Wind Waves for various U10</u>

FAIRS (2000) Experiment

Figure 1. Significant wave height (H_s) and wind stress (τ) during the FAIRS experiment. The wind direction was around 300° for most of the observational period. Periods 1 (growing seas) and 3 (mature seas) are of particular interest in this study, during which the mean wind was measured to be 12 m/s.

Observed Wave Energy decay exponent for FAIRS

The mean decay exponent for the decay event is 2.3 x 10⁻⁵. This is **some 50 times faster** than typical swell decay .

Synoptic conditions during FAIRS

20001007 12Z

Synoptic conditions during FAIRS contd.

20001004 1Z

Forecasts of FLIP Sig. Wave height

Wave heights during FLIP sudden wind drop event (XNL)

Wave heights during FLIP sudden wind drop event (DIA)

Is Langmuir turbulence an important source of the wave energy dissipation rate in this case?

• Langmuir number and water u*during the FAIRS decay event

LES OCEAN MODEL WITH WAVE EFFECTS

Sullivan, McWilliams & Melville, JFM, 2007

FAIRS LES EXPERIMENTS

Problem Design

- $U_a \sim [12 \Rightarrow 2] \text{ m/s}$
- Neutrally stratified layer bounded below by a stable thermocline
- h = -32 m
- Wave age $1.2 < C_p/U_a < 8$
- NO stochastic wave breaking
- Craig & Banner (1994) surface breaking parameterization

Process Studies

- Uniform surface stress with vortex force and surface breaking
- Monochromatic Stokes drift profile
- Decaying winds from FAIRS, period day [227.5-281]

Discretization

- $X_L = Y_L = 300m, Z_L = -150m$
- $N_x = N_y = 256, N_z = 256$
- $\Delta_x = \Delta_y = 1.17m, \Delta_z \approx [0.5 1.5]m$
- $N_{steps} > 60,000$

W-variance in the OBL for Decaying Seas

LES Calculation of Upper Ocean Dissipation Rate and Input Energy Flux to Langmuir Turbulence

Conclusions

- Energy flux to Langmuir cell generation does not account for the for the significant observed wave energy dissipation rate.
- current source terms are also unable to account for this, although we are unsure of the winds, which we are further investigating.

