A Thirty Year Wave Hindcast using the latest NCEP Climate Forecast System Reanalysis (CFSR) Winds

Arun Chawla, Deanna Spindler and Hendrik Tolman

Partners:

NOPP participants

USACE

FNMOC

NRL

DOE

UCSD

12th International Workshop on Wave Hindcasting and Forecasting and 3rd Coastal Hazards Consortium 30th Oct – 4th Nov, 2011

Kona, Hawaii

Motivation

- Development of a high resolution Climate Forecast System Reanalysis (CFSR) winds global database (1979 – 2010)
- Wind resolution high enough to resolve significant storms
- Develop a thirty year wave hindcast run to
 - For detailed seasonal and inter annual validation studies
 - Develop wave climatology
 - Provide boundary conditions for smaller domain modeling studies

Database Plan

- Development of this database is part of the NOPP initiative for improving physics packages in Operational Wind Wave Models
- Database is being developed in three stages using the WAVEWATCH III model
 - Stage 1: Develop the database using current NCEP operational wave model physics
 - Stage2: Develop the database using new physics from NOPP project in its second year (current plan to use Ardhuin et al 2010 physics)
 - Stage 3: Develop a final database using the final physics packages from the end of the NOPP program
- Stage 1 is complete and is reported here

Conclusions

- A thirty year hindcast run has been completed using NCEP CFSR reanalysis winds
- CFSR winds in the Southern Hemisphere show distinct changes at the higher wind speeds
- Validation studies with altimeter data show
 - Reduction in Scatter Indices globally (and consequent increase in Goodness-of-fit) with time
 - Wave height biases in the Northern Hemisphere show a seasonal bias that corresponds to swell dissipation issues
 - Wave height biases in the Southern Hemisphere have an inter-annual signature on top off the seasonal signature

CFSR Winds

- A coupled re-analysis of atmosphere, ocean, sea ice and land data (Saha et al, 2010)
- Reanalysis extends from 1979 to 2010, and a Reforecast from 2010 to present.
- Much higher resolution than the previous Global and North American Reanalysis.
- See Andrew Cox talks on skill of CFSR
- Forcings used in database
 - Hourly 10 m winds with ½ deg spatial resolution.
 - Hourly Air sea temperature difference with ½ deg spatial resolution.
 - Daily Sea ice with 1 deg spatial resolution.
- Global domain (90S 90N; 0 360)

CFSR winds

1.2

0.2

Stats Value

Correlation Coeff -X Norm Stand Dev

6

Months of 2005

Buoy 51001

Buoy 42001

700

600

500 400 Annual Support of the condition of the condition

200

100

10 11

CFSR Winds – Statistics

Data Quantiles

Buoy 42001

Data Quantiles

CFSR Winds – Taylor diagrams

Wind comparisons at NDBC Buoys for select months

March, 2005

August, 2005

December, 2005

CFSR Winds – Percentile distribution

N Hemisphere wind distribution (25 N to 65 N)

S Hemisphere wind distribution (25 S to 65 S)

Model Set-up

- WAVEWATCH III model
- Multi grid domain consisting of 16 grids ranging from ½ deg to 1/15 deg
- Spectral domain 50 frequency by 36 directional bins
- Physics Package
 - Tolman Chalikov source term package (with a cap for drag coefficient)
 - DIA for non linear interaction
 - Battjes Janssen shallow water depth limited wave breaking
- Model includes a partitioning algorithm (see Hanson et al, 2009) that is used for generating products

Multi – grid domain

(all resolutions in arc-minutes)

Products

- Field Output in GRIB2 format (every 3 hours)
 - Wind speed and direction
 - Bulk spectral parameters (significant wave height, peak period and average wave direction at peak period)
- Partition output
 - Available hourly, for each individual grid
 - Ascii files that provide bulk spectral estimates for each wave system (identified from a local partitioning of the spectrum)
- Point output
 - Over 2000 point outputs (buoy locations + additional output points requested by collaborators)
 - Hourly spectra, bulk parameters and partition data saved at the output points
- Altimeter collocations
 - Wind speed and wave height saved along altimeter tracks (interpolated in space and time from hourly field output files)
 - Quality controlled altimeter data archived at IFREMER used for identifying tracks

Model Validation – Altimeters

Model Validation – Altimeters

Model Validation - Altimeters

Wave Height Biases

N Hemisphere

S Hemisphere

Model Validation – Altimeters

Snapshots of wave height biases (Jason-1)

Model Validation – Buoys

Buoy 42001

Model Validation – Buoys

3uoy 42001

Conclusions

- A thirty year hindcast run has been completed using NCEP CFSR reanalysis winds
- CFSR winds in the Southern Hemisphere show distinct changes at the higher wind speeds
- Validation studies with altimeter data show
 - Reduction in Scatter Indices globally (and consequent increase in Goodness-of-fit) with time
 - Wave height biases in the Northern Hemisphere show a seasonal bias that corresponds to swell dissipation issues
 - Wave height biases in the Southern Hemisphere have an inter-annual signature on top off the seasonal signature