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Motivation
• Goal: to develop a model that is capable of simulating wave

motion (with current) in coastal waters up to the shore.

• Different levels of wave modelling:

• phase-averaging: statistical properties, spectral, SWAN.

• phase/wave-resolved: linear (MSE) and nonlinear

(NLSW, Boussinesq, Serre, Green-Naghdi).

• Non-hydrostatic wave-flow models (Navier-Stokes):

• permit wave breaking, runup, undertow, etc. derived

from first principles and well-founded semi-empirical

modelling, and

• appear to be very robust and are not prone to unstable.
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Methodology
• The simplest modelling for wave transformation is the nonlinear

shallow water (NLSW) equations.

• NLSW-type models exhibit conservation properties and are able
to deal with breaking/bore capturing, dike breach flooding, and
tsunami inundation, among others.

• With the inclusion of non-hydrostatic pressure, many other wave
phenomena (dispersion, surf beat, triads, etc.) can be described
in a natural manner as well.

• Water depth can be divided into a number of layers and thereby
take into account vertical variation (e.g. undertow).

• Also, they improve their frequency dispersion by increasing the
number of layers.
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Summary of conclusions

• SWASH is a first push toward a quasi-operational, open

source non-hydrostatic model suitable for simulation of

coastal waves and runup.

• In case of nearshore wave modelling, SWASH appears to

be accurate, fast, robust and well tested.

• The computational algorithm combines efficiency and

robustness allowing application to large-scale, real-life

problems.

• Very few tunable parameters needed.



November 1, 2011 5/37

Environmental Fluid Mechanics Section

Introduction to SWASH

• Many variants (numerics) of non-hydrostatic models have

been proposed in the literature, exposing excellent features

such as frequency dispersion and nonlinear effects.

• However, no advances have been made in assessing those

models at an engineering level with observations under

realistic nearshore conditions.

• Over the past 10 years, strong efforts have been made at

Delft University to advance the state of wave modelling and

flooding simulations for coastal engineering.

• SWASH: it is essentially applicable in coastal regions up to

the shore: Simulating WAves till SHore.
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SWASH − physics

SWASH accounts for the following physical phenomena:

• propagation, frequency dispersion, shoaling, refraction and

diffraction,

• flooding, wave runup, moving shoreline,

• nonlinear wave-wave interactions (surf beat, triads),

• wave-induced currents and wave-current interaction,

• wave breaking,

• bottom friction, and

• subgrid turbulence and vertical mixing.
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SWASH − numerics

• Fully explicit; Courant-based time step restriction (but not

severe!).

• Vertical terms are semi-implicitly integrated using a

θ−scheme (1
2
≤ θ ≤ 1).

• Staggered grid in space and time; second order in time and

no amplitude error.

• Finite differences in horizontal and finite volumes in vertical.

• Advection approximation by means of first or second order

upwind schemes with(out) flux limiting (BDF, Fromm,

MUSCL, QUICK, minmod, etc.).
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− continued −

• Advection terms are approximated such that momentum

conservation is ensured. Important for wave breaking!

• Surface elevation through depth-averaged continuity

equation ensuring global mass conservation.

• A simple approach is adopted that tracks the moving

shoreline by ensuring

• non-negative water depths and

• using first or second order upwind water depths in the

momentum flux approximations. Flux limiters (MUSCL,

minmod, Van Leer, etc.) may be employed.
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− continued −

• For accuracy reason, the pressure is split-up into hydrostatic

and non-hydrostatic parts.

• Second order projection method where correction to the

velocity field for the change in non-hydrostatic pressure is

incorporated (local mass conservation).

• Either SIP (depth-averaged mode) or (M)ILU-BiCGSTAB

(multi-layered mode) iterative solver is employed for the

solution of the pressure Poisson equation.
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General layer concept
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SWASH − functionalities

• Wave makers:

• Fourier series, time series, or

• 1D, 2D spectrum; parametric (PM, Jonswap or TMA),

SWAN or observations.

• Weakly reflective, Sommerfeld, sponge layers.

• Rectilinear or orthogonal curvilinear.

• Cartesian or spherical coordinates.

• 1D-mode (flume) or 2D-mode (basin).

• Depth-averaged or multi-layered mode.
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− continued −

• Physics: bottom friction (Chezy, Manning) and turbulent

mixing (Smagorinsky, Prandtl mixing length, k − ε).

• Hydrostatic or non-hydrostatic.

• Many outputting (same flexibility as SWAN):

• points, curves, maps, verticals, etc.,

• many quantities: water level, velocity, discharge,

pressure, runup, friction, k, ε, etc.

• ASCII files (tables, blocks) and binary Matlab files

(blocks).
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Open source, easy-to-use model

• Freely available under the GNU GPL license at Sourceforge:

http://swash.sf.net

• Easy accessible to promote ease-of-usage:

• ANSI Fortran90, fully portable on virtually all kind of

machines

• simple datastructures, easy-to-understand

• easy to install, no special libraries (except MPI)

• light and flexible, easy to maintain

• relatively quick to set up and user-friendly in operation

• The same "touch and feel" as SWAN.
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Testing and validations

• Testbed: 50 well-documented analytical and laboratory tests

including propagation, runup, dam break, hydraulic jumps,

vertical mixing, etc.

• Many simple configurations:

• flumes (2DV) and basins (2DH/3D),

• bars (Beji-Battjes, Boers, Hiswa) and shoals

(Berkhoff/elliptic, circular).

• Testing of different functionalities.

• More advanced validation: conical island, rip current,

Petten, Hiswa.
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Irregular wave breaking in a barred surf zone
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• Boers (1996); wave conditions 1B and 1C.

• Depth-averaged, 1D, ∆x = 0.03 m (150 gridpoints per wave

length).

• Initial time step = 0.001 s; CFL = 0.5.

• Manning n = 0.027.
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Boers 1B (Hm0=0.206 m, Tp=2.03 s)
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model observation

Boers 1C (Hm0=0.103 m, Tp=3.33 s)

0 10 20 30
0.04

0.06

0.08

0.1

0.12

0.14

x [m]

H
m

0 [m
]

0 10 20 30
0.5

1

1.5

2

2.5

x [m]

T
m

02
 [s

]

 

 

model observation



November 1, 2011 17/37

Environmental Fluid Mechanics Section

Boers 1B
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Boers 1C
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Wave transformation over a shallow foreshore
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• Measurements from Van Gent and Doorn (2000).

• ∆x = 1 m (200 gridpoints per wave length).

• 2 equidistant layers.

• No bed roughness.

• Initial time step = 0.02 s; CFL = 0.5.
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storm condition; Hm0 = 4.4 m, Tp = 16.2 s

0 0.1 0.2 0.3
0

10

20
deep

E
 [m

2 /H
z]

 

 
model
obs

0 0.1 0.2 0.3
0

10

20
mp3 

0 0.1 0.2 0.3
0

5

10

15
bar 

E
 [m

2 /H
z]

0 0.1 0.2 0.3
0

5

10
mp5 

0 0.1 0.2 0.3
0

5

10

15
mp6 

f [Hz]

E
 [m

2 /H
z]

0 0.1 0.2 0.3
0

5

10

15
toe 

f [Hz]



November 1, 2011 21/37

Environmental Fluid Mechanics Section

Runup of solitary wave on conical island
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Conical island
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Circulation and rip current induced by bar breaks
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Rip current (2)

• Measurements from Haller et al. (2002).

• Monochromatic, normally incident wave: H = 4.75 cm,

T = 1 s (test B).

• Depth-averaged.

• Manning n = 0.019.

• Smagorinsky subgrid model Cs = 0.1.

• ∆x = ∆y = 0.05 m (30 gridpoints per wave length).

• Initial time step = 0.005 s; CFL = 0.5.
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Rip current (3)

0

2

4

6

8

H
 [c

m
]

 

 

y = 11.23 m model
observation

8 9 10 11 12 13 14
0

2

4

6

8

y = 13.68 m 

H
 [c

m
]

x [m]



November 1, 2011 26/37

Environmental Fluid Mechanics Section

Rip current (4)
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Rip current (5)
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Rip current (6)
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Multi-directional waves propagating through a barred basi n
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HISWA (2)

• Dingemans (1987); case me35.

• 2D Jonswap spectrum: Hm0 = 10 cm, Tp = 1.24 s, cos4(θ).

• ∆x = 5 cm, ∆y = 3 cm.

• Initial time step = 0.005 s; CFL = 0.7.

• 2 equidistant layers.

• Smagorinsky model Cs = 0.1.

• Manning n = 0.02.
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HISWA (3)
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HISWA (4)
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HISWA (5)
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Performance

CPU time in µsec per gridpoint/time step on comparable

processors:

simulation #proc SWASH COULWAVE FUNWAVE

Berkhoff shoal 1 3 21 60

8 0.3 3.2 −

Conical island 1 2.2 − 40

32 0.08 − −

Rip current 1 1.6 16.4 −

18 0.1 1.1 −

32 0.076 − −
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Parallel efficiency - IBM Power6 cluster
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Further developments and plans

• Interaction with structures: (partial) reflection, transmission.

• Wind effects on wave transformation.

• Wave-induced forces on mooring ships (PhD project).

• Extension to unstructured grids.

• OpenMP, hotstarting, NetCDF, ...

• ...



November 1, 2011 37/37

Environmental Fluid Mechanics Section

http://swash.sf.net
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