Nearshore wave-flow modelling with SWASH

1/37

TUDelft

Environmental Fluid Mechanics Section

Delft University of Technology

Motivation

- Goal: to develop a model that is capable of simulating wave motion (with current) in coastal waters up to the shore.
- Different levels of wave modelling:
 - phase-averaging: statistical properties, spectral, SWAN.
 - phase/wave-resolved: linear (MSE) and nonlinear (NLSW, Boussinesq, Serre, Green-Naghdi).
- Non-hydrostatic wave-flow models (Navier-Stokes):
 - permit wave breaking, runup, undertow, etc. derived from first principles and well-founded semi-empirical modelling, and
 - appear to be very robust and are not prone to unstable.

November 1, 2011

Methodology

- The simplest modelling for wave transformation is the nonlinear shallow water (NLSW) equations.
- NLSW-type models exhibit conservation properties and are able to deal with breaking/bore capturing, dike breach flooding, and tsunami inundation, among others.
- With the inclusion of non-hydrostatic pressure, many other wave phenomena (dispersion, surf beat, triads, etc.) can be described in a natural manner as well.
- Water depth can be divided into a number of layers and thereby take into account vertical variation (e.g. undertow).
- Also, they improve their frequency dispersion by increasing the number of layers.

November 1, 2011

Summary of conclusions

- SWASH is a first push toward a quasi-operational, open source non-hydrostatic model suitable for simulation of coastal waves and runup.
- In case of nearshore wave modelling, SWASH appears to be accurate, fast, robust and well tested.
- The computational algorithm combines efficiency and robustness allowing application to large-scale, real-life problems.
- Very few tunable parameters needed.

Introduction to SWASH

- Many variants (numerics) of non-hydrostatic models have been proposed in the literature, exposing excellent features such as frequency dispersion and nonlinear effects.
- However, no advances have been made in assessing those models at an engineering level with observations under realistic nearshore conditions.
- Over the past 10 years, strong efforts have been made at Delft University to advance the state of wave modelling and flooding simulations for coastal engineering.
- SWASH: it is essentially applicable in coastal regions up to the shore: Simulating WAves till SHore.

November 1, 2011

TUDelft

5/37

SWASH – physics

SWASH accounts for the following physical phenomena:

- propagation, frequency dispersion, shoaling, refraction and diffraction,
- flooding, wave runup, moving shoreline,
- nonlinear wave-wave interactions (surf beat, triads),
- wave-induced currents and wave-current interaction,
- wave breaking,
- bottom friction, and
- subgrid turbulence and vertical mixing.

6/37

November 1, 2011

SWASH – numerics

- Fully explicit; Courant-based time step restriction (but not severe!).
- Vertical terms are semi-implicitly integrated using a θ -scheme ($\frac{1}{2} \le \theta \le 1$).
- Staggered grid in space and time; second order in time and no amplitude error.
- Finite differences in horizontal and finite volumes in vertical.
- Advection approximation by means of first or second order upwind schemes with(out) flux limiting (BDF, Fromm, MUSCL, QUICK, minmod, etc.).

- continued -

- Advection terms are approximated such that momentum conservation is ensured. Important for wave breaking!
- Surface elevation through depth-averaged continuity equation ensuring global mass conservation.
- A simple approach is adopted that tracks the moving shoreline by ensuring
 - non-negative water depths and
 - using first or second order upwind water depths in the momentum flux approximations. Flux limiters (MUSCL, minmod, Van Leer, etc.) may be employed.

- continued -

- For accuracy reason, the pressure is split-up into hydrostatic and non-hydrostatic parts.
- Second order projection method where correction to the velocity field for the change in non-hydrostatic pressure is incorporated (local mass conservation).
- Either SIP (depth-averaged mode) or (M)ILU-BiCGSTAB (multi-layered mode) iterative solver is employed for the solution of the pressure Poisson equation.

General layer concept

November 1, 2011

Environmental Fluid Mechanics Section

SWASH – functionalities

- Wave makers:
 - Fourier series, time series, or
 - 1D, 2D spectrum; parametric (PM, Jonswap or TMA), SWAN or observations.
- Weakly reflective, Sommerfeld, sponge layers.
- Rectilinear or orthogonal curvilinear.
- Cartesian or spherical coordinates.
- 1D-mode (flume) or 2D-mode (basin).
- Depth-averaged or multi-layered mode.

- continued -

- Physics: bottom friction (Chezy, Manning) and turbulent mixing (Smagorinsky, Prandtl mixing length, $k \varepsilon$).
- Hydrostatic or non-hydrostatic.
- Many outputting (same flexibility as SWAN):
 - points, curves, maps, verticals, etc.,
 - many quantities: water level, velocity, discharge, pressure, runup, friction, k, ε , etc.
 - ASCII files (tables, blocks) and binary Matlab files (blocks).

12/37

November 1, 2011

Open source, easy-to-use model

- Freely available under the GNU GPL license at Sourceforge: http://swash.sf.net
- Easy accessible to promote ease-of-usage:
 - ANSI Fortran90, fully portable on virtually all kind of machines
 - simple datastructures, easy-to-understand
 - easy to install, no special libraries (except MPI)
 - light and flexible, easy to maintain
 - relatively quick to set up and user-friendly in operation
- The same "touch and feel" as SWAN.

Testing and validations

- Testbed: 50 well-documented analytical and laboratory tests including propagation, runup, dam break, hydraulic jumps, vertical mixing, etc.
- Many simple configurations:
 - flumes (2DV) and basins (2DH/3D),
 - bars (Beji-Battjes, Boers, Hiswa) and shoals (Berkhoff/elliptic, circular).
- Testing of different functionalities.
- More advanced validation: conical island, rip current, Petten, Hiswa.

Irregular wave breaking in a barred surf zone

- Boers (1996); wave conditions 1B and 1C.
- Depth-averaged, 1D, $\Delta x = 0.03$ m (150 gridpoints per wave length).
- Initial time step = 0.001 s; CFL = 0.5.
- Manning *n* = 0.027.

November 1, 2011

Environmental Fluid Mechanics Section

Boers 1B (H_{m0} =0.206 m, T_p =2.03 s)

Boers 1C (H_{m0} =0.103 m, T_p =3.33 s)

November 1, 2011

Environmental Fluid Mechanics Section

Boers 1B

November 1, 2011

17/37

Boers 1C

November 1, 2011

18/37

TUDelft

Wave transformation over a shallow foreshore

- Measurements from Van Gent and Doorn (2000).
- $\Delta x = 1$ m (200 gridpoints per wave length).
- 2 equidistant layers.
- No bed roughness.
- Initial time step = 0.02 s; CFL = 0.5.

November 1, 2011

TUDelft

19/37

storm condition; H_{m0} = 4.4 m, T_p = 16.2 s

November 1, 2011

Environmental Fluid Mechanics Section

Runup of solitary wave on conical island

November 1, 2011

Environmental Fluid Mechanics Section

Conical island

November 1, 2011

22/37

Circulation and rip current induced by bar breaks

November 1, 2011

Environmental Fluid Mechanics Section

Rip current (2)

- Measurements from Haller et al. (2002).
- Monochromatic, normally incident wave: H = 4.75 cm, T = 1 s (test B).
- Depth-averaged.
- Manning *n* = 0.019.
- Smagorinsky subgrid model $C_s = 0.1$.
- $\Delta x = \Delta y = 0.05$ m (30 gridpoints per wave length).
- Initial time step = 0.005 s; CFL = 0.5.

24/37 JDelft

K.

Rip current (3)

November 1, 2011

Environmental Fluid Mechanics Section

Rip current (4)

November 1, 2011

Environmental Fluid Mechanics Section

Rip current (5)

November 1, 2011

Environmental Fluid Mechanics Section

Rip current (6)

November 1, 2011

Environmental Fluid Mechanics Section

Multi-directional waves propagating through a barred basin

November 1, 2011

29/37

HISWA (2)

- Dingemans (1987); case me35.
- 2D Jonswap spectrum: $H_{m0} = 10$ cm, $T_p = 1.24$ s, $\cos^4(\theta)$.
- $\Delta x = 5$ cm, $\Delta y = 3$ cm.
- Initial time step = 0.005 s; CFL = 0.7.
- 2 equidistant layers.
- Smagorinsky model $C_s = 0.1$.
- Manning *n* = 0.02.

30/37

HISWA (3)

HISWA (4)

HISWA (5)

November 1, 2011

Environmental Fluid Mechanics Section

Performance

CPU time in μ sec per gridpoint/time step on comparable processors:

simulation	#proc	SWASH	COULWAVE	FUNWAVE
Berkhoff shoal	1	3	21	60
	8	0.3	3.2	
Conical island	1	2.2		40
	32	0.08		
Rip current	1	1.6	16.4	_
	18	0.1	1.1	_
	32	0.076		_

November 1, 2011

Environmental Fluid Mechanics Section

Parallel efficiency - IBM Power6 cluster

November 1, 2011

35/37

Further developments and plans

- Interaction with structures: (partial) reflection, transmission.
- Wind effects on wave transformation.
- Wave-induced forces on mooring ships (PhD project).
- Extension to unstructured grids.
- OpenMP, hotstarting, NetCDF, ...
- •

http://swash.sf.net

November 1, 2011

37/37

