On Static vs. Dynamic Sea Level Rise

Scott C. Hagen

Peter Bacopoulos

Coastal Hydroscience Analysis, Modeling & Predictive Simulations Laboratory

CHAMPS Lab

To paraphrase a climate science motto:

"The sea level is rising, the best we can do now is to manage the unavoidable and avoid the unmanageable."

Ecological Effects of Sea Level Rise in the Northern Gulf of Mexico (EESLR-NGOM)

The Team

University of Central Florida

Scott Hagen (Science PI) Denise DeLorme Linda Walters Dingbao Wang John Weishampel George Yeh

Florida State University Wenrui Huang

University of Florida

Don Slinn

University of South Carolina

Jim Morris

Dewberry, Inc.

Jerry Sparks

Susan Taylor

Northwest Florida Water Management District

Graham Lewis (Applications PI)

The Goal

To assess the ecological impacts of SLR with an interdisciplinary and applications-based approach.

EESLR-NGOM Project Process

Presentation Outline

- Discussion of recent FEMA flood plain analyses
 → Let's use as a synergistic example.
- How do extreme variations of sea level rise impact tides & surge?
 → Let's examine this for SLR of 15.2 cm, 30.5 cm, & 1.0 m (6 in., 1.0 ft., & 3.28 ft.).
- Discussion, conclusions and implications.

Image NASA Image © 2008 TerraMetrics Image © 2008 DigitalGlobe

30°03'57.24" N 69°50'18.01" W

Google"

Eye alt 7678.35 km

159 synthetic storms from FEMA floodplain analysis

0.2% (500-year) floodplain

For the 159 synthetic storms ...

- Each produced a MEOW
 Maximum Envelope Of Water
- The MEOWs were compared to the 500-year floodplain
- The top 5 contributing storms were identified and contribute to 76% of the 500-year floodplain

Ranking of contributing storms

Rank	Storm number	% Contribution	Cum. % Contrib.
(1	65	25	25
2	83	23	48
Top 5 🔶 3	84	12	60
4	64	12	72
5	66	4	76
6	86	3	79
7	82	3	82
8	85	3	85
9	75	3	88
10	76	3	91
11	77	3	94
12	154	3	97
13	78	2	99
14	74	1	(fully covered) 100

Attributes of top 5 contributing storms

Storm number	Central pressure deficit (hPa)	Radius to maximum winds (km)	Forward speed (m/s)	Saffir- Simpson scale
65	56	68	4.2	Cat 3
83	87	37	6.8	Cat 4
84	87	37	6.8	Cat 4
64	56	68	4.2	Cat 3
66	56	68	4.2	Cat 3
Min of all 159	13	18	2.1	Cat 1
Max of all 159	90	120	11.3	Cat 4

Top 5 contributing storms

Top 5 contributing storms

SLR Application

- SLR tests included 15.2 cm, 30.5 cm, & 1 m (Think 6 in., 1 ft., & ≈3.28 ft.)
- Static = existing MOM* was elevated by SLR
 *Maximum Of Maximums for tides & surge
- Dynamic = surge was simulated w/SLR included
 - Simulated astronomic tides
 + SLR incorporated as steric effect
 - Simulated surge from top five storms
 + SLR incorporated as steric effect

Tides w/15.2 cm SLR

Static

Tides w/15.2 cm SLR

<u>Dynamic</u>

Static

<u>Dynamic</u>

<u>Static</u>

Dynamic

Static

<u>Dynamic</u>

<u>Static</u>

<u>Dynamic</u>

Surge w/15.2 cm SLR

<u>Static</u>

Surge w/15.2 cm SLR

<u>Dynamic</u>

Static

<u>Dynamic</u>

<u>Static</u>

Dynamic

Static

<u>Dynamic</u>

<u>Static</u>

<u>Dynamic</u>

<u>Static</u>

Dynamic

Floodplain impacted by SLR

Sea level rise (m)	Approach	Area (km²)			
Astronomic tides					
0.152	Static	34			
	Dynamic	41			
0.305	Static	99			
	Dynamic	137			
1.000	Static	534			
	Dynamic	626			
Storm surge					
0.152	Static	58			
	Dynamic	54			
0.305	Static	102			
	Dynamic	104			
1.000	Static	247			
	Dynamic	360			

Discussion

- Top contributing storms were identified, i.e., storms contributing to the 500-yr floodplain
- Of the top five contributing storms: Two are Category 4 Three are Category 3
- More attributes than storm strength alone, i.e., Saffir-Simpson scale is lacking
- In fact, landfall location relative to the floodplain is a critical factor towards surge inundation leading to spatial variability surge inundation

Conclusions

- Tide & surge inundation are nonlinearly related to sea level rise (SLR)
- We recommend using a dynamic approach since it deterministically identifies impacted area*
 - * The following five slides demonstrate a biologically dynamic relationship in a coastal marsh region.

MLW in coastal St. Johns: Present Sea

MLW in coastal St. Johns: 30.5 cm SLR

Calculation procedure

MLW & MHW

are determined via analysis of simulated tidal record

Biomass production

is determined by applying biomass curve spatially

Biomass production: Present sea state

Biomass production: 30.5 cm SLR.

Samuel Clemens (a.k.a., Mark Twain)

"The smell of sulphur is strong, but not unpleasant to a sinner."

