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• Hurricane Ike (2008) produced an early forerunner 
of 2+ m along the Louisiana-Texas shelf and coast 

• 15 hours prior to landfall

• The hurricane was located off the shelf in the 
deep Gulf of Mexico

• Winds were directed shore parallel or offshore

• The forerunner penetrated deep into Galveston Bay 
into the heart of Houston

• A major portion of Ike’s surge propagated as a free 
wave along the LATEX shelf down the Texas coast

Motivation



Tracks of major storms and bathymetry showing LATEX shelf

NOAA stations 8701724, 8760922, 8762075, 8764227, 8766072, 8766094, 8770771
Andrew Kennedy gauges Z – R



Ike water surface elevation anomaly (measured water level – predicted 
tides) from eastern Louisiana to western Texas

15 hours prior to Landfall Landfall



Wind vectors 15 hours prior to landfall from H*Wind/OWI  data assimilated 
models

Extent of hurricane force winds are contoured in red
Extent of tropical storm force winds are contoured in yellow and green

Eye and hurricane force winds are off  the shelf
Winds are directed shore parallel or offshore



• Hurricane Ike forerunner origin 

• Wave radiation gradient induced stress ?

• Gulf of Mexico wide resonant modes ?

• Geostrophic set up ?

Question ?



• Hurricane Ike forerunner originates from Geostrophic 
setup and requires

• Fast shore parallel shelf currents
• Low shelf friction
• A wide shelf

• Hurricane Ike forerunner has a slow time scale and 
its implications include 

• Early dune degradation
• Efficient inland coastal floodplain and bay 

penetration
• Very fast shore parallel shelf currents that destroy 

offshore energy infrastructure

Conclusions & Implications



USGS temporary 
gauge

Dunes

Bolivar Peninsula, Pre-Ike



USGS temporary 
gauge

Dunes

Bolivar Peninsula, Post-Ike



• Methods
• SWAN+ADCIRC Wave & Circulation Model Coupling
• TX2008-r09 SWAN+ADCIRC Model for Texas
• Air-sea interaction
• Validation data

• Ike Hindcast and Validation
• Winds, Waves, Surge, Shelf velocities

• Ike Analysis
• Origin of the forerunner – Coriolis effect

• Conclusions & Implications

Hurricane Ike Forerunner Surge
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• ADCIRC solves for water surface elevations and currents in two 
and three dimensions

• ADCIRC and SWAN interact
– Water levels and currents effect waves
– Wave breaking forces water level setup and currents

SWAN+ADCIRC Model – Coupled waves and current on identical 
unstructured grids

• SWAN solves the wave 
action density and is a non- 
phase resolving wave model 
with wave energy 
represented by a spectrum



• Western North Atlantic – Gulf of Mexico
• Floodplain from Brownsville to Lake 

Calcasieu
• Resolution down to 30m
• Fully incorporates high resolution 

features, channels, barrier islands and 
wave breaking zones

• 3,323,388 nodes
• Time steps: ADCIRC  1 sec 

SWAN   10 min
• Tx2008_r09 Performance on Diamond

– SWAN+ADCIRC-CG: 14 wall clock 
minutes per day of simulation on 
4096 cores

TX2008-r09 Bathymetry and topography



2048 core domain decomposition

Wind drag coefficient variability by 
storm sector; Powell (2006)

Sector based  drag laws

Extents of sectors in relation to 
direction of storm movement; 
Powell (2006)



Validation Data: Wave parameter time histories



Validation Data: Water level time histories
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- 24 hrs

Ike wind contours and vectors (m/s)



- 21 hrs

Ike wind contours and vectors (m/s)



- 18 hrs

Ike wind contours and vectors (m/s)



- 15 hrs

Ike wind contours and vectors (m/s)



- 12 hrs

Ike wind contours and vectors (m/s)



- 9 hrs

Ike wind contours and vectors (m/s)



- 6 hrs

Ike wind contours and vectors (m/s)



- 3 hrs

Ike wind contours and vectors (m/s)



LANDFALL =  0 hrs

Ike wind contours and vectors (m/s)



+ 3 hrs

Ike wind contours and vectors (m/s)



+ 6 hrs

Ike wind contours and vectors (m/s)



+ 9 hrs

Ike wind contours and vectors (m/s)



+ 12 hrs

Ike wind contours and vectors (m/s)



Ike significant wave height contours (m) and wind vectors (m/s)

- 24 hrs



Ike significant wave height contours (m) and wind vectors (m/s)

- 21 hrs



Ike significant wave height contours (m) and wind vectors (m/s)

- 18 hrs



Ike significant wave height contours (m) and wind vectors (m/s)

- 12 hrs



Ike significant wave height contours (m) and wind vectors (m/s)

- 9 hrs



Ike significant wave height contours (m) and wind vectors (m/s)

- 6 hrs



Ike significant wave height contours (m) and wind vectors (m/s)

- 3 hrs



Ike significant wave height contours (m) and wind vectors (m/s)

LANDFALL =  0 hrs



Ike significant wave height contours (m) and wind vectors (m/s)

+ 3 hrs



Ike significant wave height contours (m) and wind vectors (m/s)

+ 6 hrs



Ike significant wave height contours (m) and wind vectors (m/s)

+ 9 hrs



Ike significant wave height contours (m) and wind vectors (m/s)

+ 12 hrs





















Ike surge contours (m) and wind vectors (m/s)

- 24 hrs



Ike surge contours (m) and wind vectors (m/s)

- 21 hrs



Ike surge contours (m) and wind vectors (m/s)

- 18 hrs



Ike surge contours (m) and wind vectors (m/s)

- 15 hrs



Ike surge contours (m) and wind vectors (m/s)

- 12 hrs



Ike surge contours (m) and wind vectors (m/s)

- 9 hrs



Ike surge contours (m) and wind vectors (m/s)

- 6 hrs



Ike surge contours (m) and wind vectors (m/s)

- 3 hrs



Ike surge contours (m) and wind vectors (m/s)

LANDFALL  0 hrs



Ike surge contours (m) and wind vectors (m/s)

+ 3 hrs



Ike surge contours (m) and wind vectors (m/s)

+ 6 hrs



Ike surge contours (m) and wind vectors (m/s)

+ 9 hrs



Ike surge contours (m) and wind vectors (m/s)

+ 12 hrs



























Ike Hindcast – HWM Comparisons – URS/FEMA Data



Ike significant surface current contours and vectors (m/s)

- 24 hrs



Ike significant surface current contours and vectors (m/s)

- 21 hrs



Ike significant surface current contours and vectors (m/s)

- 18 hrs



Ike significant surface current contours and vectors (m/s)

- 15 hrs



Ike significant surface current contours and vectors (m/s)

- 12 hrs



Ike significant surface current contours and vectors (m/s)

- 9 hrs



Ike significant surface current contours and vectors (m/s)

- 6 hrs



Ike significant surface current contours and vectors (m/s)

- 3 hrs



Ike significant surface current contours and vectors (m/s)

LANDFALL   0 hrs



Ike significant surface current contours and vectors (m/s)

+ 3 hrs



Ike significant surface current contours and vectors (m/s)

+ 6 hrs



Ike significant surface current contours and vectors (m/s)

+ 9 hrs



Ike significant surface current contours and vectors (m/s)

+ 12 hrs
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Ike – difference between surface water anomaly (m) with and without Coriolis

- 24 hrs



Ike – difference between surface water anomaly (m) with and without Coriolis

- 21 hrs



Ike – difference between surface water anomaly (m) with and without Coriolis

- 18 hrs



Ike – difference between surface water anomaly (m) with and without Coriolis

- 15 hrs



Ike – difference between surface water anomaly (m) with and without Coriolis

- 12 hrs



Ike – difference between surface water anomaly (m) with and without Coriolis

- 9 hrs



Ike – difference between surface water anomaly (m) with and without Coriolis

- 6 hrs



Ike – difference between surface water anomaly (m) with and without Coriolis

- 3 hrs



Ike – difference between surface water anomaly (m) with and without Coriolis

LANDFALL   0 hrs



Ike – difference between surface water anomaly (m) with and without Coriolis

+ 3 hrs



Ike – difference between surface water anomaly (m) with and without Coriolis

+ 6 hrs



Ike – difference between surface water anomaly (m) with and without Coriolis

+ 9 hrs



Ike – difference between surface water anomaly (m) with and without Coriolis

+ 12 hrs
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Conclusions
• Coupled wave + current simulations faithfully forecast 

deep water, coastal and inland waves and surge

– Integrated wave + current models

– Large domains

– Appropriate levels of local grid resolution 

– Excellent winds

– Wave and surge data to validate



Conclusions
• Large scale and early Forerunner is generated through 

fast shore parallel currents and Coriolis driven tilt

– Is possible due to the wide LATEX shelf, smooth 
bottom and large size of storms

– Is a slow process allowing plenty of time to penetrate 
far inland

– Can propagate as a free shelf wave from the LA coast 
past Corpus Christi
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