Interaction of Tsunamis with Short Surface Waves: An Experimental Study

James M. Kaihatu, John T. Goertz and Hoda El Safty
Texas Engineering Experiment Station
Zachry Department of Civil Engineering
Texas A&M University
College Station, TX, USA

1. Now at Sonny Astani Department of Civil Engineering, University of Southern California

12th International Workshop on Wave Hindcasting and Forecasting and 3rd Coastal Hazard Symposium
Motivation

2004 Indian Ocean Tsunami from Koh Jum Island
Motivation

- Generally – default paradigm for tsunamis: solitary wave
 - Used for lab studies of tsunami damage

- Madsen et al. (2008)
 - Solitary wave paradigm flawed
 - Cause order of magnitude errors in spatial and temporal evolution over a sloping bottom

12th International Workshop on Wave Hindcasting and Forecasting and 3rd Coastal Hazard Symposium
Interaction with the Swell Wave Field

• Hypothesis:
 – Overlying swell wavefield can have some subtle effect on underlying tsunami
 • Front face steepness
 • Wave-wave interaction
• Run long wave through random swell field
• Use transient analysis (wavelet, Hilbert-Huang) to investigate effects
NEES Payload

- One year project from NEES program, National Science Foundation
- Use NEES Tsunami facility at Oregon State University
- Tsunami Wave Basin:
 - 48.8m x 26.5m x 2.1m
 - 29-paddle multi-directional piston wavemaker
 - 4 resistance gages and 2 ADVs
 - on movable bridge
Test Conditions

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Hs (cm)</th>
<th>Tp (s)</th>
<th>kh</th>
<th>δ=a/h</th>
<th>Ur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0.033</td>
<td>0.033</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>0.45</td>
<td>0.033</td>
<td>0.163</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>0.067</td>
<td>0.067</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>4</td>
<td>0.45</td>
<td>0.067</td>
<td>0.331</td>
</tr>
</tbody>
</table>

Tsunami “height” ~30 cm

Water depth 0.75 m

Different runs with tsunami either in middle or end of swell record

12th International Workshop on Wave Hindcasting and Forecasting and 3rd Coastal Hazard Symposium
Experiments

Tsunami Only

12th International Workshop on Wave Hindcasting and Forecasting and 3rd Coastal Hazard Symposium

Tsunami with Swell
Analysis

Maximum Surface Elevation
- As proxy for waveheight: maximum surface elevation in record
- Maximum surface elevation reached earlier with combined conditions than with either alone.
- Different results with tsunami in middle or at end of swell record.

![Graphs showing maximum surface elevation with and without swell and tsunami](image-url)

12th International workshop on Wave Hindcasting and Forecasting and 3rd Coastal Hazard Symposium
Wavelet Analysis

Morlet Wavelet Transform

- Data from experiment – periodic signal interacting with a transient signal
- Standard Fourier Transform techniques not suitable
- Wavelet transform – time-dependent frequencies
- Spectral densities as a function of frequency and time

\[WT(a, \tau) = \int_{-\infty}^{\infty} x(t) \psi_{a,\tau}(t) \, dt, \]

\[\psi(t) = \pi^{-1/4} \exp\left(-\frac{t^2}{2}\right) \exp(i\omega t), \]
Wavelet Analysis

Gage 1

Gage 8

Gage 16

Gage 20

Tsunami Only

12th International Workshop on Wave Hindcasting and Forecasting and 3rd Coastal Hazard Symposium
Wavelet Analysis

Tsunami with Swell: $H_s=5\text{cm}$, $T_p=2\text{s}$
Wavelet Analysis

Tsunami with Swell: $H_s=5\text{ cm}$, $T_p=4\text{ s}$
Hilbert-Huang Transform

Hilbert Transform plus Empirical Model Decomposition

- Take original nonperiodic signal
- Calculate envelope with Hilbert Transform, then calculate mean
- Subtract mean from original signal
 - New signal
- Do this on each updated signal k times
- Result – mode c_1
- Subtract mode c_1 from original data – obtain new data
- Perform sifting process again
- Advantage:
 - No *apriori* basis function
 - Modes usually have some physical basis
HHT of Tsunami

Blue: Gage 1
Green: Gage 8

Blue: Gage 16
Green: Gage 20

Blue: Gage 1
Green: Gage 8
Blue: Gage 16
Green: Gage 20
HHT of Combined Tsunami-Swell
Steepness

Breaking: related to wave steepness $\frac{\partial \eta}{\partial x}$:

- Deduce steepness from:
 - Time series
 - Combined HHT modes (long/short motions)
- Look for maximum steepness

Approximate steepness by linear wave equation:

$$\frac{\partial \eta}{\partial x} = -\frac{1}{\sqrt{gh}} \frac{\partial \eta}{\partial t}$$
Steepness

1. Blue: Tsunami
 Green: Tsunami with swell
 Red: Tsunami with swell – long wave

2. Blue: Tsunami with Swell 1 (green)
 Tsunami with Swell 2 - long wave (red)

3. Blue: Tsunami only (blue)
 Tsunami with Swell 3 (green)
 Tsunami with Swell 4 - long wave (red)

4. Blue: Tsunami only (blue)
 Tsunami with Swell 4 (green)
 Tsunami with Swell 4 - long wave (red)
Conclusions Thus Far

- It was hypothesized that the overlying swell field might have some effect on a long tsunami (front face steepness, etc.)
- Experiments were run at the NEES Tsunami Facility at Oregon State University
- Some indication of swell affecting maximum surface amplitude of overall wave field
- Wavelet analysis: spectral structure of tsunami affected by swell
- Use Hilbert-Huang Transform to break motion up into scales
- Analysis of steepness in combined motion: strong energy shift to high frequencies made more efficient with swell present.