WAVES 11, KONA HAWAI`I

Modeling of the 2011 Tohoku-oki Tsunami and it's impacts to Hawaii

Yoshiki Yamazaki¹, Volker Roeber¹, Kwok Fai Cheung¹ and Thorne Lay²

> ¹Department of Ocean and Resources Engineering University of Hawaii at Manoa

²Department of Earth and Planetary Sciences University of California, Santa Cruz

October 31, 2011 Hilton Waikoloa Village, Kona, Hawai`i

Outline

- 1. NEOWAVE
- Theoretical and Numerical Formulations
- 2. Finite-Fault Model and Tsunami Generation
 - Finite Fault Solution
- Tsunami Generation and Near-field Tsunami Modeling
- 3. Tsunami Propagation and Impacts on Hawaii
 - Tsunami Propagation across Pacific
 - Tide Gauge Prediction at Honolulu, Oahu
 - Runup and Inundation Modeling at Waikoloa, Big Island
- 4. Conclusions
- 5. Future Studies and Developments

NEOWAVE

(Non-hydrostatic Evolution of Ocean WAVE)

Governing Equations

- Depth-integrated, Non-hydrostatic Equation
 - Consideration of Weakly Wave Dispersion through Non-hydrostatic Pressure. (Stelling and Zijlema, 2003; Yamazaki *et al.*, 2009 & 2011)

Numerical Schemes

- Semi-implicit, Finite Difference (FD) Model
 - Explicit Hydrostatic solution
 - Implicit Non-hydrostatic solution
- Momentum Conserved Advection (MCA) Scheme
 - Shock Capturing Scheme for FD Models (Stelling and Duinmeijer, 2003; Yamazaki et al., 2009 & 2011)
- Grid Refinement Scheme
 - Two-way Grid-nesting scheme of Yamazaki *et al.* (2011) ensures propagation of dispersive waves and discontinuities across the intergrid boundary.

NEOWAVE

- **Governing Equations**
- Depth-integrated, Non-hydrostatic Equations in Cartesian Grid

Continuity equation

$$\frac{\partial(\zeta - \eta)}{\partial t} + \frac{\partial(UD)}{\partial x} + \frac{\partial(VD)}{\partial y} = 0$$

x-momentum equation

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} = -g \frac{\partial \zeta}{\partial x} - \frac{1}{2} \frac{\partial q}{\partial x} - \frac{1}{2} \frac{\partial q}{\partial x} (\zeta - h + \eta) - f \frac{U \sqrt{U^2 + V^2}}{D}$$

y-momentum equation

$$\frac{\partial V}{\partial t} + U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} = -g \frac{\partial \zeta}{\partial y} - \frac{1}{2} \frac{\partial q}{\partial y} - \frac{1}{2} \frac{\partial q}{\partial y} (\zeta - h + \eta) - f \frac{V \sqrt{U^2 + V^2}}{D}$$

z-momentum equation

$$\frac{\partial W}{\partial t} = \bigcup_{D}^{q}$$

The 2011 Tohoku-oki Earthquake

Finite Fault Model

```
Mw = 9.0
05:46:18, March 11, 2011 (UTC)
14:46:18, March 11, 2011 (Local time)
```

```
Zhao et al. (2011)
epicenter : 38.107° N, 142.916° E
depth : 14.5 km
```

JMA

epicenter : 38.103° N, 142.861° E depth : 24.0 km

USGS

epicenter : 38.297° N, 142.372° E depth : 30.0 km

Strike angle: $190^{\circ} < \phi < 202^{\circ}$ Dip angle: $10^{\circ} < \delta < 12^{\circ}$

Tsunami Generation and Near-field Impact

Model Setup: Two Levels of Nested Grids

Level-1 Grid 2 arcmin (~3700m) Northwest Pacific

Level-2 Grid 24 arcsec (~600m) East Japan

Tsunami Generation and Near-field Impact

Tsunami Generation with Finite Fault Solution

Rupture Duration: 148 sec (~2.5min)

46° E

ш

QuickTime™ and a H.264 decompressor are needed to see this picture.

Tsunami Generation and Near-field Impact

GPS Buoys and Wave Gauge Comparisons

Time-series and Spectra of Surface Elevations

Distant Tsunami Evolution Tsunami Impact over North Pacific

DART Buoys Locations in North Pacific

Distant Tsunami Evolution

• Tsunami Impact over North Pacific

DART Buoys Locations in North Pacific

QuickTime™ and a H.264 decompressor are needed to see this picture.

Distant Tsunami Evolution DART Buoy Comparisons (Northwest Pacific)

Time-series and Spectra of Surface Elevations

Distant Tsunami Evolution DART Buoy Comparisons (Northeast Pacific)

Time-series and Spectra of Surface Elevations

Distant Tsunami Evolution

• Tsunami Impact over North Pacific

Maximum Wave Amplitude

0.0	0.2	0.4	0.6	0.8	1.0 m

Distant Tsunami Evolution Tsunami Impact on Hawaii

Shallow Shelf around Hawaiian Island Chain

Distant Tsunami Evolution Tsunami Impact on Hawaii

Maximum Wave Amplitude

Distant Tsunami Evolution Tide Gauge Comparison at Honolulu, Oahu

Four Level of Nested-Girds

Level-2 Grid 15 arcsec (~450m) Hawaiian Islands

Level-3 Grid 3 arcsec (~90m) Northwest Pacific

Level-4 Grid 0.3 arcsec (~9m) Honolulu

Time-series and Spectra of Surface Elevations

Distant Tsunami Evolution

Tsunami Impact at West Big Island

Four Level of Nested-Girds

Level-3 Grid 3 arcsec (~90m) Northwest Big Island

Level-4 Grid 0.3 arcsec (~9m) Waikoloa

QuickTime™ and a H.264 decompressor are needed to see this picture.

Distant Tsunami Evolution

Tsunami Impact at Waikoloa, Big Island

Wave Transformation and Resulting Runup and Inundation

QuickTime™ and a H.264 decompressor are needed to see this picture.

Conclusions

- 2011 Tohoku-oki earthquake tsunami provides the best extensive recorded dataset for better understanding of earthquake and tsunami physics and improvement of assessment tools.
- A Finite-Fault model provides the time sequence of rupture processes to model tsunami generation from seafloor deformation and considering land subsidence.
- NEOWAVE gives good agreement with recorded water level stations along the Japan and across the Pacific, which validates the Finite-Fault model as well as the capability of NEOWAVE for modeling both near-field and distant tsunamis.

Future Studies and Developments

Future Studies

- (1) Modeling other Hawaiian Islands' coastlines
- (2) Modeling Runup/Inundation and studying Resonance Amplification for coast of Tohoku, Japan, and US West coast.

Developments

- (1) Improvement of Dispersion
- (2) Parallelization of NEOWAVE

Applications

- (1) Tsunami Inundation Mapping for Hawaii, Northwest Hawaiian Islands, American Samoa, Western Samoa, US Gulf coasts, Puerto Rico, and Chile.
- (2) Storm Surge and Wave Modeling for Pacific Islands and US East coasts.