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Motivation and background

 (Ocean wave climate important to maritime safety

— Bad weather account for a great number of ship losses and

accidents
— Severe sea state conditions taken into account in design and
operation of ships and marine structures

e Possible trends in the wave climate may need to be
taken into account
— E.g. due to climate change
* A stochastic model for significant wave height in space

and time are developed
— Including a component for long-term trends
— Fitted to data in the North Atlantic Ocean from 1958 — 2002
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Methodology — brief summary

e Bayesian hierarchical space-time model

— Log-transformed data to account for heteroscedasity and
heterogeneous trends

— Bayesian framework to incorporate prior knowledge

* Observation model and different levels of state models
— Spatial model: 15t order Markov Random Field (MRF)
— Space-time dynamic model: Vector autoregressive model
— Seasonal model: spatially independent Gaussian process

— Long-term trend model: Gaussian process with quadratic trend
« Various model alternatives with linear and no trend also tried out

* Implemented by MCMC methods
— Gibbs sampler with Metropolis-Hastings steps; full conditionals
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Summary of conclusions

 Model seem to perform reasonably well overall

» Different long-term trends estimated by different model
alternatives and using monthly of daily data
— 16 — 31 cm (23-42 cm) for moderate conditions (Hg = 3m)
— 55-100 cm (76 — 140 cm) for extreme conditions (Hg > 10m)

o Extrapolating the linear trends to give projections for
100 years

— Expected increases within the range of 45-75 cm (53-90 cm)
(moderate conditions) and 1.5 - 2.5 m (1.8 — 3.0 m) (extreme
conditions) over 100 years

Model selection inconclusive
Uncertain whether the log-transform represent an improvement
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DETAILS OF THE STUDY
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Data and area description

 Corrected ERA-40 data of significant wave height®)
— Spatial resolution: 1.5° x 1.5° globally (some areas missing)

— Temporal resolution: 6 hourly from Jan. 1958 to Feb. 2002
(44 years and 2 months = 64 520 points in time)

e Ocean area between 51° - 63°N and 324° - 348°E

) Data kindly provided by Royal Netherlands Meteorological Institute (KNMI), Dr. Andreas Sterl-
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Model description — Main model

Significant wave height at location x, time t: Z(x, t)
Logarithmic transform: Y(x, t) = In Z(x, t)
Observation model:
Y(X, 1) = H(x, t) + £,(X, 1)
with

H(x, t) = p(X) + B(x, t) + M(t) + T(t) and g,(x, t) ~""* N(0, 5,2
Alternative representation on original scale

Z(X, t) = @ H(X) +6(x, ) + M(t) + T(t) + e,(X, 1) = @ U(X)@b(X, Y)aM(DaT(H)aey (X, 1)

Various components represents multiplicative factors on the
original scale
— NB: Need to consider bias correction when retransforming to original
(missing in the paper)

All noise terms in the model assumed independent
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Time independent, spatial model
o 1storder Markov Random Field
H(X) = Ho(X) + 0l {H(XN) - 1o (ON) + p(xS) - by (x)}
+ 0y {UOE) - pg (XF) + p(XY) - o (X} + £,(x)

with the spatially specific mean,

Ho(X) = Mg 1 + Mg oM(X) + Mo sn(X) + o aM(X)? + hg sN(X)? + g g M(X)N(X)

xP = |ocation of the nearest grid-point in direction D =N, S, W, E
m(X), n(x) = longitude and latitude of location x

a, ,q,: spatial dependence parameters in lateral and longitudinal
directions

£ ,(X) _iid N, 5,2)
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Short-term spatio-temporal model
o 1St order vector autoregressive model
B(x, t) = bgd(X, t-1) + b (XN, t-1) + b-B(XE, t-1)
+ bO(x>, t-1) + by, O(XW, t-1) + g4(X, t)

« Vector autoregressive parameters by, by, bg, bs and by, assumed
invariant in space

+ gg(x, 1) ~"N(0, 0¢?)
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Spatially independent seasonal model

Modeled as an annual cyclic Gaussian process
M(t) = c cos(wt) + d sin(wt) + €,(t)

« Seasonal parameters ¢ and d assumed invariant in space

W related to the period of the annual sycle, e.g. w = 11/6 for
monthly data

. g,() ~"N(, 0,,2)
« The effect of including a semi-annual component (2" harmonic)
was also investigated but found to be small
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Long-term trend model

« Gaussian process with quadratic trend

T(t) = yt + nt* + e(t)

« &1 ~"N(O, o)
 Model alternatives:

Model 1: T(t) = yt + nt? + e(t) (quadratic trend model)
Model 2: T(t) = yt + (1) (linear trend model)
Model 3: T(t) =0 (no trend model)

Model 4: M(t) = c cos(wt) + d sin(wt) + yt + nt*> + ¢(t); T(t) =0
Model 5: T(t) = c cos(wt) + d sin(wt) + yt + ¢ (t); T(t) =0
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MCMC simulations

« MCMC techniques used to simulate from the model

Normal probability plot of the residuals (monthly data):

Gibbs sampler with Metropolis-Hastings steps

1000 samples of the parameter vector with 20,000 burn-in
iterations and batch size 25 (monthly data) or 5 (daily data)

Convergence likely by visual inspection of trace plots, control
runs with longer burn-in and different starting values

Plot of the residuals indicate that model assumptions are
reasonable |
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Results and predictions

Spatial, space-time dynamic
and seasonal models perform
well, with factors (monthly
data)
— et ~ 23-29

edxt ~ 077 - 1.5

eMd ~ 0.65-1.5 (0.67 —1.6)
0(x, t) becomes more
Important for daily data

Figures show spatial field and
seasonal component on
transformed scale (monthly
data)
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Results — Example of estimated trends

e Quadratic and linear model, monthly data (transformed scale)
Yearly trend component Yearly trend component
E 2 E =
| 0 10 20 30 40 | 0 10 20 30 40
Year (since 1958) Year (since 1958)
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Results — estimated expected trends

Normal conditions Extreme conditions

(Hs=3 m) (Hg > 10 m)

Monthly data Daily data Monthly data Dalily data

Model 1 30 cm 22 cm 1.0 m 73 cm
(40 cm) (28 cm) (1.3 m) (95 cm)
Model 2 31cm 22 cm 1.0 m 72 cm
(42 cm) (28 cm) (1.4 m) (95 cm)
Model 4 19 cm 16 cm 63 cm 55 cm
(27 cm) (23 cm) (91 cm) (76 cm)
Model 5 26 cm 19 cm 88 cm 65 cm
(35 cm) (26 cm) (1.2 m) (87 cm)

* Red values correspond to updated results with bias correction
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Future projections — 100 year trends

* Future projections made by extrapolating the linear trends
(somewhat speculative)

e Critical assumption — estimated trend will continue into the future

Normal conditions Extreme conditions

(Hg =3 m) (Hg>10 m)

Monthly data Daily data Monthly data Daily data

Model 2 0.75m 0.50 m 2.5 m 1.7m
(0.90 m) (0.59 m) (3.0 m) (2.0 m)
Model 5 0.63m 0.45m 2.1m 1.5m
(0.74 m) (0.53 m) (2.5 m) (1.8 m)

* Red values correspond to updated results with bias correction
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Model comparison and selection

 Two loss functions used for model selection, based on (short-
term) predictive power
— Standard loss function and weighted loss function

e Model selection remains inconclusive

Monthly data Daily data

Model 1
Model 2
Model 3
Model 4
Model 5

31. October 2011

Ls
3.4119453
3.4247630
3.2667590
3.3168082
3.2979152
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Ly
3.5604366
3.5459232
3.4683411
3.4679681
3.4545460

Ls
2.5615432
2.5729260
2.6002640
2.5569820
2.5692487

Ly
2.6654849
2.6842552
2.7280551
2.6550046
2.6816735
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Discussion and concluding remarks

« A Bayesian hierarchical space-time model for log-transformed
significant wave height data has been presented
« Estimated expected long-term trends (1958-2002):
— 16 — 31 cm (23-42 cm) for moderate conditions (Hg = 3m)
— 55-100 cm (76 — 140 cm) for extreme conditions (Hg > 10m)
» Estimated expected future projections (100 years):

 Between 45-75 cm (53-90 cm) (moderate conditions) and 1.5 - 2.5 m
(1.8 — 3.0 m) (extreme conditions) over 100 years

* Trends for moderate conditions comparable to trends estimated
without the log-transform

o Difficult to evaluate model alternatives — model selection
Inconclusive

» Possible model extensions could include regression terms with
relevant meteorological parameters as covariates
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