

Stochastic Modeling of Wave Climate Using a Bayesian Hierarchical Space-Time Model with a Log-Transform

Presented at WAVE Workshop 2011 Hawaii, USA, October 31. 2011

Erik Vanem, Arne Bang Huseby and Bent Natvig

Motivation and background

- Ocean wave climate important to maritime safety
 - Bad weather account for a great number of ship losses and accidents
 - Severe sea state conditions taken into account in design and operation of ships and marine structures
- Possible trends in the wave climate may need to be taken into account
 - E.g. due to climate change
- A stochastic model for significant wave height in space and time are developed
 - Including a component for long-term trends
 - Fitted to data in the North Atlantic Ocean from 1958 2002

Methodology – brief summary

- Bayesian hierarchical space-time model
 - Log-transformed data to account for heteroscedasity and heterogeneous trends
 - Bayesian framework to incorporate prior knowledge
- Observation model and different levels of state models
 - Spatial model: 1st order Markov Random Field (MRF)
 - Space-time dynamic model: Vector autoregressive model
 - Seasonal model: spatially independent Gaussian process
 - Long-term trend model: Gaussian process with quadratic trend
 - Various model alternatives with linear and no trend also tried out
- Implemented by MCMC methods
 - Gibbs sampler with Metropolis-Hastings steps; full conditionals

Summary of conclusions

- Model seem to perform reasonably well overall
- Different long-term trends estimated by different model alternatives and using monthly of daily data

- 16 - 31 cm (23-42 cm) for moderate conditions ($H_S \approx 3m$)

 $-55 - 100 \text{ cm} (76 - 140 \text{ cm}) \text{ for extreme conditions } (H_{S} > 10 \text{ m})$

- Extrapolating the linear trends to give projections for 100 years
 - Expected increases within the range of 45-75 cm (53-90 cm) (moderate conditions) and 1.5 – 2.5 m (1.8 – 3.0 m) (extreme conditions) over 100 years
- Model selection inconclusive
- Uncertain whether the log-transform represent an improvement

UiO **Content of Mathematics**

University of Oslo

DETAILS OF THE STUDY

Data and area description

- Corrected ERA-40 data of significant wave height^(*)
 - Spatial resolution: $1.5^{\circ} \times 1.5^{\circ}$ globally (some areas missing)
 - Temporal resolution: 6 hourly from Jan. 1958 to Feb. 2002
 (44 years and 2 months = 64 520 points in time)
- Ocean area between 51° 63°N and 324° 348°E

(*) Data kindly provided by Royal Netherlands Meteorological Institute (KNMI), Dr. Andreas Sterl-31. October 2011 WAVE Workshop 2011

Model description – Main model

- Significant wave height at location x, time t: Z(x, t)
- Logarithmic transform: $Y(x, t) = \ln Z(x, t)$
- Observation model:

$$Y(x, t) = H(x, t) + \varepsilon_{Y}(x, t)$$

with

 $H(x, t) = \mu(x) + \theta(x, t) + M(t) + T(t)$ and $\epsilon_{Y}(x, t) \sim^{i.i.d} N(0, \sigma_{Y}^{2})$

Alternative representation on original scale

 $Z(x, t) = e^{\mu(x) + \theta(x, t) + M(t) + T(t) + \epsilon_{Y}(x, t)} = e^{\mu(x)}e^{\theta(x, t)}e^{M(t)}e^{T(t)}e^{\epsilon_{Y}(x, t)}$

- Various components represents multiplicative factors on the original scale
 - NB: Need to consider bias correction when retransforming to original (missing in the paper)
- All noise terms in the model assumed independent

31. October 2011

WAVE Workshop 2011

Time independent, spatial model

• 1st order Markov Random Field

$$\begin{split} \mu(x) &= \mu_0(x) + \alpha_{\phi} \left\{ \mu(x^{N}) - \mu_0(x^{N}) + \mu(x^{S}) - \mu_0(x^{S}) \right\} \\ &+ \alpha_{\lambda} \left\{ \mu(x^{E}) - \mu_0(x^{E}) + \mu(x^{W}) - \mu_0(x^{W}) \right\} + \varepsilon_{\mu}(x) \end{split}$$

with the spatially specific mean,

 $\mu_0(x) = \mu_{0,1} + \mu_{0,2}m(x) + \mu_{0,3}n(x) + \mu_{0,4}m(x)^2 + \mu_{0,5}n(x)^2 + \mu_{0,6}m(x)n(x)$

- x^{D} = location of the nearest grid-point in direction D = N, S, W, E
- m(x), n(x) =longitude and latitude of location x
- α_{ϕ} , α_{λ} : spatial dependence parameters in lateral and longitudinal directions
- $\epsilon_{\mu}(x) \sim^{i.i.d} N(0, \sigma_{\mu}^{2})$

Short-term spatio-temporal model

• 1st order vector autoregressive model

$$\begin{split} \theta(\mathbf{x}, t) &= b_0 \theta(\mathbf{x}, t\text{-}1) + b_N \theta(\mathbf{x}^N, t\text{-}1) + b_E \theta(\mathbf{x}^E, t\text{-}1) \\ &+ b_S \theta(\mathbf{x}^S, t\text{-}1) + b_W \theta(\mathbf{x}^W, t\text{-}1) + \varepsilon_{\theta}(\mathbf{x}, t) \end{split}$$

- Vector autoregressive parameters b₀, b_N, b_E, b_S and b_W assumed invariant in space
- $\varepsilon_{\theta}(x, t) \sim^{i.i.d} N(0, \sigma_{\theta}^2)$

Spatially independent seasonal model

• Modeled as an annual cyclic Gaussian process

 $M(t) = c \cos(\omega t) + d \sin(\omega t) + \varepsilon_m(t)$

- Seasonal parameters c and d assumed invariant in space
- ω related to the period of the annual sycle, e.g. $\omega = \pi/6$ for monthly data
- $\varepsilon_{\rm m}(t) \sim^{\rm i.i.d} N(0, \sigma_{\rm m}^2)$
- The effect of including a semi-annual component (2nd harmonic) was also investigated but found to be small

Long-term trend model

• Gaussian process with quadratic trend

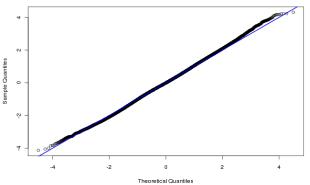
$$T(t) = \gamma t + \eta t^2 + \varepsilon_T(t)$$

- $\epsilon_{T}(t) \sim^{i.i.d} N(0, \sigma_{T}^{2})$
- Model alternatives:

Model 1: $T(t) = \gamma t + \eta t^2 + \varepsilon_T(t)$ (quadratic trend model)Model 2: $T(t) = \gamma t + \varepsilon_T(t)$ (linear trend model)Model 3: T(t) = 0(no trend model)Model 4: $M(t) = c \cos(\omega t) + d \sin(\omega t) + \gamma t + \eta t^2 + \varepsilon_m(t); T(t) = 0$ Model 5: $T(t) = c \cos(\omega t) + d \sin(\omega t) + \gamma t + \varepsilon_m(t); T(t) = 0$

MCMC simulations

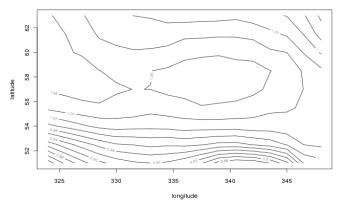
- MCMC techniques used to simulate from the model
 - Gibbs sampler with Metropolis-Hastings steps
 - 1000 samples of the parameter vector with 20,000 burn-in iterations and batch size 25 (monthly data) or 5 (daily data)
 - Convergence likely by visual inspection of trace plots, control runs with longer burn-in and different starting values
 - Plot of the residuals indicate that model assumptions are reasonable

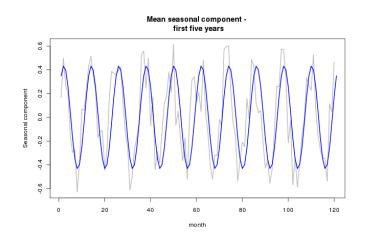


Normal probability plot of the residuals (monthly data):

Results and predictions

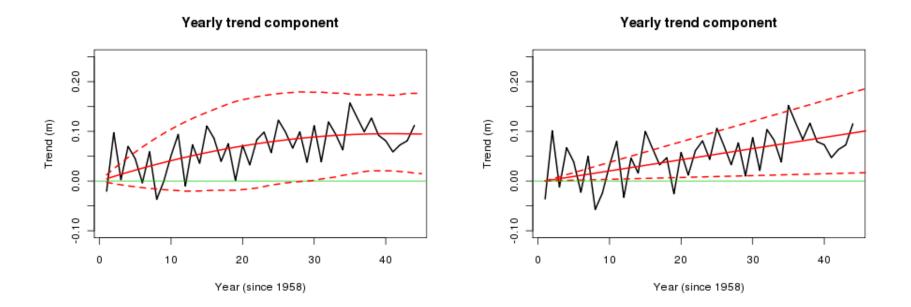
- Spatial, space-time dynamic and seasonal models perform well, with factors (monthly data)
 - $e^{\mu(x)} \sim 2.3 2.9$
 - $e^{\theta(x, t)} \sim 0.77 1.5$
 - $e^{M(t)} \sim 0.65 1.5 (0.67 1.6)$
- θ(x, t) becomes more important for daily data
- Figures show spatial field and seasonal component on transformed scale (monthly data)





Results – Example of estimated trends

• Quadratic and linear model, monthly data (transformed scale)



UiO **Department of Mathematics**

University of Oslo

Results – estimated expected trends

	Normal conditions (H _S ≈ 3 m)		Extreme conditions (H _S > 10 m)	
	Monthly data	Daily data	Monthly data	Daily data
Model 1	30 cm	22 cm	1.0 m	73 cm
	(40 cm)	(<mark>28 cm</mark>)	(1.3 m)	<mark>(95 cm)</mark>
Model 2	31 cm	22 cm	1.0 m	72 cm
	(42 cm)	(28 cm)	(1.4 m)	(95 cm)
Model 4	19 cm	16 cm	63 cm	55 cm
	<mark>(27 cm)</mark>	(23 cm)	(91 cm)	(76 cm)
Model 5	26 cm	19 cm	88 cm	65 cm
	(<mark>35 cm</mark>)	(<mark>26 cm)</mark>	(1.2 m)	<mark>(87 cm)</mark>

* Red values correspond to updated results with bias correction

Future projections – 100 year trends

- Future projections made by extrapolating the linear trends (somewhat speculative)
- Critical assumption estimated trend will continue into the future

	Normal conditions (H _S ≈ 3 m)		Extreme conditions (H _S > 10 m)	
	Monthly data	Daily data	Monthly data	Daily data
Model 2	0.75 m	0.50 m	2.5 m	1.7 m
	(0.90 m)	(0.59 m)	(3.0 m)	(2.0 m)
Model 5	0.63 m	0.45 m	2.1 m	1.5 m
	(0.74 m)	(0.53 m)	(2.5 m)	(1.8 m)

* Red values correspond to updated results with bias correction

Model comparison and selection

- Two loss functions used for model selection, based on (shortterm) predictive power
 - Standard loss function and weighted loss function
- Model selection remains inconclusive

	Monthly data		Daily data	
	L _s	L _w	L _s	L _w
Model 1	3.4119453	3.5604366	2.5615432	2.6654849
Model 2	3.4247630	3.5459232	2.5729260	2.6842552
Model 3	3.2667590	3.4683411	2.6002640	2.7280551
Model 4	3.3168082	3.4679681	2.5569820	2.6550046
Model 5	3.2979152	3.4545460	2.5692487	2.6816735

Discussion and concluding remarks

- A Bayesian hierarchical space-time model for log-transformed significant wave height data has been presented
- Estimated expected long-term trends (1958-2002):
 - 16 31 cm (23-42 cm) for moderate conditions ($H_s \approx 3m$)
 - $-55 100 \text{ cm} (76 140 \text{ cm}) \text{ for extreme conditions } (H_S > 10\text{m})$
- Estimated expected future projections (100 years):
 - Between 45-75 cm (53-90 cm) (moderate conditions) and 1.5 2.5 m (1.8 3.0 m) (extreme conditions) over 100 years
- Trends for moderate conditions comparable to trends estimated without the log-transform
- Difficult to evaluate model alternatives model selection inconclusive
- Possible model extensions could include regression terms with relevant meteorological parameters as covariates