Statistical downscaling of multivariate wave climate using a weather type approach

Melisa Menendez, Fernando J. Mendez, Cristina Izaguirre, Paula Camus, Antonio Espejo, Veronica Canovas, Roberto Minguez, Iñigo J. Losada, Raul Medina

mendezf@unican.es
Environmental Hydraulics Institute, Universidad de Cantabria, SPAIN
Objective #1

Predict multivariate wave climate (Y) at a particular location S as a function of synoptic atmospheric circulation (X)
Objective #1

ATMOSPHERIC CIRCULATION (predictor X: SLP)

MULTIVARIATE WAVE CLIMATE (predictand Y, H, T, Dir)

Regional atmospheric climatology (X)

Local wave climatology (Y)
Objective 1

Predict multivariate wave climate (Y) at a particular location S as a function of **Synoptic Atmospheric Circulation patterns** (X)

$Y = f(H)$

$W T_i$ = Weather-type
Objective 1

Predict multivariate wave climate \((Y)\) at a particular location \(S\) as a function of synoptic atmospheric circulation patterns \((X)\)

\[Y = f(H, T) \]
Objective 1

Predict multivariate wave climate (Y) at a particular location S as a function of synoptic atmospheric circulation patterns (X)

\[Y = f(H, T, \text{Dir}) \] Camus et al 2011
\[X = (\text{WT}_1, \text{WT}_2, \text{WT}_3, \text{WT}_4) \]

\[Y = \text{g}(X) \]

WT = Weather-type

\[p_i = \text{ocurrence probability of } \text{WT}_i \]

Regression model / Stat. Downscaling:

\[Y = \text{g}(X) \]
\[X = (W_{T1}, W_{T2}, W_{T3}, W_{T4}) \]

\[Y \]

\[
\begin{align*}
 f_1(H) & \quad f_3(H) \\
 f_2(H) & \quad f_4(H)
\end{align*}
\]

\[p_i=\text{occurrence probability of } W_{Ti} \]

\[p_1 + p_2 + p_3 + p_4 = 1 \]

\[f_S(H) = p_1 f_1(H) + p_2 f_2(H) + p_3 f_3(H) + p_4 f_4(H) \]
Objective #2

Project multivariate wave climate (Y) at a particular location S for a given GCM in a given time slice (X’)

\[X' = \text{new predictor} \]

\[Y = g(X') \]

\[p'_1 + p'_2 + p'_3 + p'_4 = 1 \]

\[f'_S(H) = p'_1 f_1(H) + p'_2 f_2(H) + p'_3 f_3(H) + p'_4 f_4(H) \]

\[df(H) = f'_S(H) - f_S(H) \]
1. Synthesis of the work

2. Choosing the predictand Y

3. Choosing the predictor X

4. Statistical relationship: \(Y = g(X) \)

5. Wave climate projection

1. Conclusions
- GOW Wave reanalysis (IH Cantabria)
1. Synthesis of the work

2. Choosing the predictand Y

3. Choosing the predictor X

4. Statistical relationship: $Y = g(X)$

5. Wave climate projection

1. Conclusions
The predictor. Synoptic Atmospheric Circulation patterns

Data: Sea Level Pressure fields (SLP)
(from NCEP-NCAR Atmospheric reanalysis)
The predictor. Synoptic Atmospheric Circulation patterns

Data: Sea Level Pressure fields (SLP)
(from NCEP-NCAR Atmospheric reanalysis)

Averaged 3-daily SLP fields

From: **2009-Jan-1st 00:00** to **2009-Jan-3rd 18:00 p.m**
6 hourly SLP fields
The predictor. Synoptic Atmospheric Circulation patterns

Principal components analysis

\{PC_1, PC_2, \ldots, PC_M\}

Data mining algorithms

SELF ORGANIZING MAP (SOM)
The predictor. Synoptic Atmospheric Circulation patterns

$M=100 \ (10 \times 10)$

SELF ORGANIZING MAPS (SOM)
The predictor. Synoptic Atmospheric Circulation patterns
1. Synthesis of the work

2. Choosing the predictand Y

3. Choosing the predictor X

4. Statistical relationship: \(Y = g(X) \)

5. Wave climate projection

1. Conclusions
METHODOLOGY

❖ Selection of (H,T,Dir). The predictand.

3-day H_s
Selection of (H,T,Dir). The predictand.
Selection of (H,T,Dir). The predictand.
- 3-days directional energy flux (Fx, Fy)
3-days wave spectra
Surfing conditions at Mundaka
1. Synthesis of the work

2. Choosing the predictand Y

3. Choosing the predictor X

4. Statistical relationship: \(Y = g(X) \)

5. Wave climate Projection

1. Conclusions
GCM models analyzed (from AR4)

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Centre</th>
<th>Country</th>
<th>Runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 BCM2</td>
<td>Bjerknes Centre for Climate Research</td>
<td>Norway</td>
<td>1</td>
</tr>
<tr>
<td>2 CCSM3</td>
<td>National Center for Atmospheric Research</td>
<td>USA</td>
<td>4</td>
</tr>
<tr>
<td>3 CGCM3.1(T47)</td>
<td>Canadian Centre for Climate Modelling and Analysis</td>
<td>Canada</td>
<td>3</td>
</tr>
<tr>
<td>4 CGCM3.1(T63)</td>
<td>Canadian Centre for Climate Modelling and Analysis</td>
<td>Canada</td>
<td>1</td>
</tr>
<tr>
<td>5 CNM3</td>
<td>Centre National de Recherches Meteorologiques</td>
<td>France</td>
<td>1</td>
</tr>
<tr>
<td>6 CNM33</td>
<td>Centre National de Recherches Meteorologiques</td>
<td>France</td>
<td>1</td>
</tr>
<tr>
<td>7 CSIRO-MK3.0</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
<td>Australia</td>
<td>1</td>
</tr>
<tr>
<td>8 CSIRO-MK3.5</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
<td>Australia</td>
<td>1</td>
</tr>
<tr>
<td>9 ECHAM5 MPI-OM</td>
<td>Max-Planck-Institute for Meteorology</td>
<td>Germany</td>
<td>4</td>
</tr>
<tr>
<td>10 ECHAM5C MPI-OM</td>
<td>Max-Planck-Institute for Meteorology</td>
<td>Germany</td>
<td>3</td>
</tr>
<tr>
<td>11 ECHEG</td>
<td>University of Bonn</td>
<td>Germany</td>
<td>1</td>
</tr>
<tr>
<td>12 EGMAM</td>
<td>Freie Universitaet Berlin, Institute for Meteorology</td>
<td>Germany</td>
<td>3</td>
</tr>
<tr>
<td>13 EGMAM2</td>
<td>Freie Universitaet Berlin, Institute for Meteorology</td>
<td>Germany</td>
<td>1</td>
</tr>
<tr>
<td>14 GFDL-CM2.0</td>
<td>Geophysical Fluid Dynamics Laboratory</td>
<td>USA</td>
<td>1</td>
</tr>
<tr>
<td>15 GISS-AOM</td>
<td>Goddard Institute for Space Studies</td>
<td>USA</td>
<td>1</td>
</tr>
<tr>
<td>16 GISS-ER</td>
<td>Goddard Institute for Space Studies</td>
<td>USA</td>
<td>1</td>
</tr>
<tr>
<td>17 HADCM3C</td>
<td>United Kingdom Met Office</td>
<td>United Kingdom</td>
<td>1</td>
</tr>
<tr>
<td>18 HADGEM2</td>
<td>United Kingdom Met Office</td>
<td>United Kingdom</td>
<td>1</td>
</tr>
<tr>
<td>19 INGV-SXG</td>
<td>Istituto Nazionale di Geofisica e Vulcanologia</td>
<td>Italy</td>
<td>1</td>
</tr>
<tr>
<td>20 INM-CM3.0</td>
<td>Institute of Numerical Mathematics</td>
<td>Russia</td>
<td>1</td>
</tr>
<tr>
<td>21 IPSL-CM4</td>
<td>Institut Pierre Simon Laplace</td>
<td>France</td>
<td>1</td>
</tr>
<tr>
<td>22 MIROC3.2 (Hires)</td>
<td>Center for Climate System Research, NIES y RCGC.</td>
<td>Japan</td>
<td>1</td>
</tr>
<tr>
<td>23 MRI-CGCM2.3.2</td>
<td>Meteorological Research Institute</td>
<td>Japan</td>
<td>1</td>
</tr>
<tr>
<td>24 PCM</td>
<td>National Center for Atmospheric Research</td>
<td>USA</td>
<td>4</td>
</tr>
</tbody>
</table>

25 Models
42 runs

Ensemble (multi-model)
Are the GCMs able to forecast the climate of the past?

Reanalysis (1961-1990)

<table>
<thead>
<tr>
<th>GCMs</th>
<th>run1</th>
<th>run2</th>
<th>run3</th>
<th>run4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECHAM5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>0.33</td>
<td>0.35</td>
<td>0.37</td>
<td>0.35</td>
</tr>
<tr>
<td>SI</td>
<td>0.44</td>
<td>0.45</td>
<td>0.47</td>
<td>0.45</td>
</tr>
<tr>
<td>BCM2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNCM3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>1.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIROMK3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFDLCM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Projection from GCM

Reanalysis/20C3M

For a particular GCM...

Probability of occurrence

Predictand = X

Y' = g(X')

For a particular scenario...

Similar climate system (WT),
New Probability of occurrence!!

2010-2040

2040-2070

2070-2100

Predictand = X'
1. Synthesis of the work

2. Choosing the predictand Y

3. Choosing the predictor X

4. Statistical relationship: \(Y = g(X) \)

5. Wave climate Projection

1. Conclusions
• Statistical Downscaling of Multivariate Wave Climate
• Based on Weather Types approach + Data Mining Techniques
• Easy visualization of WTs and associated wave climate
• The projection is based on the occurrence probability of each weather type
• Low computational cost for study of ocean wave climate projections.
Statistical downscaling of multivariate wave climate using a weather type approach

Melisa Menendez, Fernando J. Mendez, Cristina Izaguirre, Paula Camus, Antonio Espejo, Veronica Canovas, Roberto Minguez, Iñigo J. Losada, Raul Medina

mendezf@unican.es

Environmental Hydraulics Institute, Universidad de Cantabria, SPAIN

The authors would like to thank Puertos del Estado (Spanish Ministry of Public Works), Government of Cantabria and AZTI (Government of País Vasco) for providing the buoy data. The work was partially funded by projects “GRACCIE” (CSD2007-00067, CONSOLIDER-INGENIO 2010) from the Spanish Ministry of Science and Technology, “MARUCA” (200800050084091) from the Spanish Ministry of Public Works, “C3E” (E17/08) from the Spanish Ministry of Environment, Rural and Marine Affairs
Other applications...

Wave energy flux
Extreme value model

The HsMAX sample of each cell is fitted to an extreme value distribution.

Option a) **GEV**

\[
F(x; \theta) = \exp \left\{ -\left[1 + \frac{x - \mu}{\psi} \right]^{\frac{-1}{\xi}} \right\}
\]

Option b) **Pareto-poisson**

\[
F(x; \theta) = 1 - \left(1 + \frac{x}{\sigma} \frac{\xi}{\psi} \right)^{-\frac{1}{\xi}}
, \quad p(x; \theta) = e^{-\lambda} \frac{\lambda^x}{x!}
\]
METHODOLOGY

- Extreme value model

The composed extreme PDF can be obtained:

a) **GEV (annual maxima distribution)**

\[
F(H; \mu, \psi, \xi) = \prod_{i=1}^{M} F_i \left(H; \mu_i, \psi_i, \xi_i \right)^{p_i} 365 \over \Delta \text{days}
\]

b) **Pareto-poisson**

\[
F(H; \nu, \sigma, \xi) = \sum_{i=1}^{M} \nu_i F_i \left(H; \nu_i, \sigma_i, \xi_i \right)
\]

Occurrence rate:

\[
\nu = \nu_1 + \nu_2 + ... + \nu_n
\]