Statistical Reconstruction and Projection of Ocean Waves

Xiaolan L. Wang, Val R. Swail, and Y. Feng

Climate Research Division, Science and Technology Branch, Environment Canada

12th Wave Workshop, Hawaii, Oct 31 – Nov. 4, 2011

Outline

- Methodologies and Datasets
- Some characteristics of the observed SWH-SLP relationships
- Preliminary results on North Atlantic wave height trends over 1871-2008 (138 yr)
- Preliminary results on changes as projected in CMIP5 simulations
- Ongoing/future work

Methodologies

- Conventional linear and quantile regressions → means, extremes (both need high resolution data for extremes)
- Extreme value (EV) model with covariates (predictors) \rightarrow extremes

Both the location and scale parameters vary with the predictors?

In order to diminish climate model biases:

- Use normalized predictor quantities in statistical downscaling

 P_t – normalized anomalies of seasonal mean <u>SLP</u>

 G_t – normalized anomalies of seasonal mean squared SLP gradient (geo-wind energy index)

- Use a quantile-matching algorithm to adjust (CMIP5) model simulated predictor values, so that the adjusted simulations for a baseline period share the same distribution as the corresponding observations (reanalysis data).

Datasets

1. ERA40 SLP – predictors

observed SLP-SWH relationships

2. ERA40 waves (SWH) - predictand

- different statistical downscaling methods

e.g., linear regression versus Quantile regression

different temporal resolutions, e.g., seasonal versus 6-hourly
Important - find good predictors that are also well simulated by climate models!

3. Predictors from 6-hourly SLP of 20CRv2, The 20th Century Reanalysis (56 runs)

 \rightarrow the relationships \rightarrow to reconstruct the past (1871-2008) wave climate

- temporal homogeneity issues, homogenization - ongoing

- basically homogeneous for the North Atlantic – focus of this presentation

4. Predictors from CMIP5 model simulations

 \rightarrow the relationships \rightarrow to project future wave climates

For extremes, scale is also varying with the covariates in a large portion of the oceans

Compare EV1: <u>only location par. varies</u> with the predictors, but scale & shape are constant with EV2: <u>both location & scale par's vary</u> with the predictors, but shape is constant

EV0: parameters are not significantly related to the predictors (EV1 is used)

New: use <u>6-hourly</u> data to calibrate predictand-predictors relationships

Using ERA40 { 6-hourly SLP on 2°x2° lat-lon grid 6-hourly Hs on 1.5°x1.5° lat-lon grid for 1981-2000 (baseline period)

Will also use ERA-Interim { 6-hourly SLP on 2°x2° lat-lon grid 6-hourly Hs on 0.7°x0.7° lat-lon grid for 1981-2000

Calibrate a linear regression Ht ~ (Pt, Gt) relationship for each season separately.

Evaluate the models that are calibrated from data in a calibration period with data in an evaluation period that does not overlap with the calibration period, e.g.,

calibration: ERA40 for 1981-2000 evaluation: ERA40 for 1958-1977 allows us to check statistical models' time-transferability

Anomaly correlation skill scores

Lower skill in the lower latitudes, especially in the cold seasons (JFM, OND)

Predicted-minus-observed wave height climate (1958-1977 mean, in m)

The stat. model overestimates the wave height climate, especially in high latitudes in winter - It overestimates mainly the low quantiles of wave heights, for example

It systematically over-predicts wave heights that are below 2 m, but under-predicts the extremes.

To improve model skill:

Will explore new models, such as quantile regression

 different predictor-predictand relationships for different quantiles (e.g, one for the lowest 10%, one for 10-20%, ..., and one for 90-100%, respectively.)
Will add a few predictors that can represent swell components.

Reconstructed 1871-2008 trends in wave heights

For now, just show trends in the North Atlantic, in which 20CR is homogeneous; it suffers from inhomogeneity in other basins

The 1871-2008 trends in seasonal <u>mean</u> SWH in the North Atlantic (← 6-hourly relationships)

Crosses: location of significant (at least 5%) linear trends

Trends from 6-hourly relationships

Trends from seasonal relationships

Crosses: location of significant (at least 5%) linear trends

The 1871-2008 trends in seasonal <u>max</u> SWH in the North Atlantic (← 6-hourly relationships)

Crosses: location of significant (at least 5%) linear trends

Trends from 6-hourly relationships

Trends from seasonal relationships

Crosses: location of significant (at least 5%) linear trends

Examples of changes in the <u>distribution</u> of <u>JFM seasonal maximal</u> significant wave heights Location parameter time series at (55.5N, 13.5W) (from seasonal GEV relationships)

A 20-yr event has become a 17-yr event during the past century. The increase is mainly in the last 30 years.

Examples of changes in the <u>distribution</u> of <u>JFM seasonal maximal</u> significant wave heights

(from seasonal GEV relationships)

There seems to be a significant decrease in the early decades but no trend since early 20C.

Trends in wave heights as downscaled from the CanESM2 simulations

- historical simulations for 1941-2005 (5 ensemble members)
- RCP 2.6 simulations for 2006-2100 (95 yrs)
- RCP 4.5 simulations for 2006-2100 (95 yrs)
- RCP 8.5 simulations for 2006-2100 (95 yrs)

CanESM2 simulated trends in JFM mean wave heights

Crosses: location of significant (at least 5%) linear trends

CanESM2 simulated trends in JAS mean wave heights

Crosses: location of significant (at least 5%) linear trends

Ongoing/future work

- Develop, apply, and evaluate different statistical downscaling methods ongoing
- Reconstruct the 1871-2008 global wave climate using the 20CRv2 SLP ongoing
- Characterize global wave climate trends over the 138-year period since 1871, with temporal homogeneity assessment
- Conduct statistical projections of global wave climate using CMIP5 simulations
- Analyze the COWCliP wave projections to characterize <u>climate change signal</u> and various <u>uncertainty</u> associated with wave climate change projections

Thank you very much!