Canadian Marine Ensemble Forecast System

Syd Peel and Roop Lalbeharry

Meteorological Research Division/RPN-E Environment Canada

Waves Workshop - Halifax 2009

Object:

Probabilistic forecasts of wave and wind properties

- Forecast Models
- Probabilistic Models

- Forecast Models
- Probabilistic Models
 - Raw Empirical Forecasts
 - Kernel Density Estimators (KDEs)
 - Joint Densities

- Forecast Models
- Probabilistic Models
 - Raw Empirical Forecasts
 - Kernel Density Estimators (KDEs)
 - Joint Densities
- Verification

- Forecast Models
- Probabilistic Models
 - Raw Empirical Forecasts
 - Kernel Density Estimators (KDEs)
 - Joint Densities
- Verification
 - Observational Data
 - Results

- Forecast Models
- Probabilistic Models
 - Raw Empirical Forecasts
 - Kernel Density Estimators (KDEs)
 - Joint Densities
- Verification
 - Observational Data
 - Results
- Ongoing/Future Work

wave model: WAM 4.5

- wave model: WAM 4.5
- atmospheric model: operational Canadian EPS

- wave model: WAM 4.5
- atmospheric model: operational Canadian EPS
 - 20 perturbations of 1 control
 - NWP model: global GEM (0.9°)
 - ensemble Kalman filter assimilation cycle

- wave model: WAM 4.5
- atmospheric model: operational¹ Canadian EPS
 - 20 perturbations of 1 control
 - NWP model: global GEM (0.9°)
 - ensemble Kalman filter assimilation cycle

 $^{^{1}\}gtrsim Jul/2007$

Probabilistic Models - Empirical

$$P(SWH > 3m) = \frac{\text{\# ensemble members forecasting SWH} > 3m}{20}$$

Probabilistic Models - Kernel Density Estimators

Probabilistic Models - Kernel Density Estimators

$$P(SWH > 3m) = \int_3^\infty f(x) dx$$

$$P(WSPD = V \land WDIR = \theta)$$

$$P(WSPD = V \land WDIR = \theta)$$

bivariate Gaussian kernels

$$P(WSPD = V \land WDIR = \theta)$$

- bivariate Gaussian kernels
- fitted to "pre-whitened" random variables (Fukunaga (1972) Introduction to Statistical Pattern Recognition)

$$P(WSPD = V \land WDIR = \theta)$$

- bivariate Gaussian kernels
- fitted to "pre-whitened" random variables (Fukunaga (1972) Introduction to Statistical Pattern Recognition)
- smoothing bandwidth as prescribed in Silverman's Density Estimation

Syd Peel and Roop Lalbeharry

Verification Samples

Hindcast

Forecast

Phase II

Phase I

1/Aug/2007 - 31/Mar/2008

1/Apr/2008 - 31/Mar/2009

1/Apr/2009 -

Verification Samples

Observational Data:

buoy reports archived in binary on CFS archive/CMC

Verification Samples

Observational Data:

- buoy reports archived in binary on CFS archive/CMC
- as transmitted on GTS

 Skillful probabilistic forecasts from 4-10+ days for thresholds of 1-7 m

- Skillful probabilistic forecasts from 4-10+ days for thresholds of 1-7 m
- Significant underdispersion/over-forecasting bias mitigated somewhat by KDE's for lower thresholds

- Skillful probabilistic forecasts from 4-10+ days for thresholds of 1-7 m
- Significant underdispersion/over-forecasting bias mitigated somewhat by KDE's for lower thresholds
- More direct remedy to underdispersion/bias: forecast calibration

- Skillful probabilistic forecasts from 4-10+ days for thresholds of 1-7 m
- Significant underdispersion/over-forecasting bias mitigated somewhat by KDE's for lower thresholds
- More direct remedy to underdispersion/bias: forecast calibration
- First steps: zeroth-order calibration on Atlantic Canada window à la Hamill and Colucci

- Skillful probabilistic forecasts from 4-10+ days for thresholds of 1-7 m
- Significant underdispersion/over-forecasting bias mitigated somewhat by KDE's for lower thresholds
- More direct remedy to underdispersion/bias: forecast calibration
- First steps: zeroth-order calibration on Atlantic Canada window à la Hamill and Colucci
- Addition of output from second phase of hindcast to verification sample

- Skillful probabilistic forecasts from 4-10+ days for thresholds of 1-7 m
- Significant underdispersion/over-forecasting bias mitigated somewhat by KDE's for lower thresholds
- More direct remedy to underdispersion/bias: forecast calibration
- First steps: zeroth-order calibration on Atlantic Canada window à la Hamill and Colucci
- Addition of output from second phase of hindcast to verification sample
 - → stratification by season/threshold?

- Skillful probabilistic forecasts from 4-10+ days for thresholds of 1-7 m
- Significant underdispersion/over-forecasting bias mitigated somewhat by KDE's for lower thresholds
- More direct remedy to underdispersion/bias: forecast calibration
- First steps: zeroth-order calibration on Atlantic Canada window à la Hamill and Colucci
- Addition of output from second phase of hindcast to verification sample
 - → stratification by season/threshold?
 - culling of buoys from verification sample

Acknowledgements

- Canadian Search and Rescue NIF
- Hal Ritchie
- Bridget Thomas
- Doug Mercer
- Jamie McLean
- Serge Desjardins
- Garry Pearson

