Statistical Properties of Hurricane Surge

Jen Irish

Don Resio, David Divoky

October 22, 2009 Halifax, N.S., Canada

TEXAS A&M * ENGINEERING

Sponsored by U.S. Army Corps of Engineers

Statistical Properties of Hurricane Surge Outline

- Motivation
- Methodology summary
- Conclusions summary
- Historical surge record approach (HSR)
- Joint probability method with response functions approach (JPM-RF)
- Methodology
- Results
 - Record length
 - Climate variability
 - Alongshore position
- Conclusions

Statistical Properties of Hurricane Surge Motivation

A <u>robust</u> and <u>accurate</u> method for determining hurricane surge extreme value statistics is required.

- Review popular statistical approaches
- Evaluate with respect to:
 - Water level record length
 - Climate variability

TEXAS A&M * ENGINE

Alongshore position

Statistical Properties of Hurricane Surge Methodology Summary

- Consider idealized, alongshore-uniform coasts
- Assume "actual" hurricane meteorological distribution
- Assume "actual" surge response
- Develop synthetic hurricane records of differing lengths
- Develop statistical estimates with:
 - "Historical" surge record (HSR)
 - Joint probability method with response functions (JPM-RF)
- Evaluate error with respect to assumed actual distribution

Statistical Properties of Hurricane Surge Conclusions Summary

- HSR accuracy limited by record length
- JPM-RF accuracy minimally impacted by record length
- Short records yield insufficient data for HSR
- Decadal scale climate variability introduces negligible error (except for short records and HSR)
- HSR yields vastly different results, depending on along-coast position
- JPM-RF yields same result, regardless of along-coast position

Statistical Properties of Hurricane Surge Historical Surge Record Approach

- Form surge data set of "largest" storms (measurements or hindcasts)
- Typical applications:
 - Points over Threshold (POT)
 - Annual series
- PARAMETRIC (GEV, Weibull, Log Normal or other assumed form):
 - Considers sampling size effects on "fitted" curve
 - Uses various fitting methods (MLM, MOM, etc.)
 - Allows parametric estimation of return periods larger than given by the historical record
- NON-PARAMETRIC (e.g., EST):
 - No assumptions on data's probability distribution in interior
 - Uses data to develop distribution in interior
 - Still extrapolates beyond data range using parametric "fit" to data
- Results known to be sensitive to record length
- Storms assumed to be from a homogeneous parent population
 - Climate variability typically excluded

Statistical Properties of Hurricane Surge Historical Surge Record Approach

Cumulative distribution function:
$$F(x) = \frac{m}{N+1}$$

Return period:
$$T_R(x) = \frac{1}{\lambda [1 - F(x)]}$$

Statistical Properties of Hurricane Surge Joint Probability Method with Response Functions Approach

General form for surge response at location x and time t:

 $\zeta(x,t) = \Phi(\underline{G}, \underline{W} \mid c_p, R_{\max}, v_f, \theta, S(t), t)$

where

 $\zeta(x,t)$ is the storm surge at location x and time t,

 Φ is a numerical model used to generate surges over a grid,

 \underline{G} is a time invariant grid of bathymetry/topography,

 \underline{W} is a wind field over the grid at time t,

 c_p is the central pressure,

 $R_{\rm max}$ is the radius to maximum wind speed from the center of the storm,

- v_f is the forward velocity of the storm,
- $\boldsymbol{\theta}$ is the geographic angle of the track, and

S(t) is the position of the storm along the track at time t,

Statistical Properties of Hurricane Surge Joint Probability Method with Response Function Approach

Joint probability matrix:

 $p(c_p, R_p, v_f, \theta_l, x) = \Lambda_1 \cdot \Lambda_2 \cdot \Lambda_3 \cdot \Lambda_4 \cdot \Lambda_5$

$$\Lambda_{1} = p(c_{p} \mid x) = \frac{\partial F[a_{0}(x), a_{1}(x)]}{\partial(\Delta p \mid c_{p})} = \frac{\partial}{\partial x} \left\{ \exp\left\{-\exp\left[\frac{\Delta p - a_{0}(x)}{a_{1}(x)}\right]\right\} \right\}$$
(Gumbel Distribution)
$$\Lambda_{2} = p(R_{p} \mid c_{p}) = \frac{1}{\sigma(\Delta P)\sqrt{2\pi}} e^{-\frac{(\bar{R}_{p}(\Delta P) - R_{p})^{2}}{2\sigma^{2}(\Delta P)}}$$

Statistical Properties of Hurricane Surge Methodology – Assumed "Actual" Conditions

- Alongshore-uniform:
 - Slope = 1:1000 & 1:10000
 - 2000 km (~ US GOM length)
- Historical meteorological record:

•
$$p(c_p, R_p, x) = \Lambda_1 \Lambda_2 \Lambda_5$$

- $\lambda = 0.36^*$ (Poisson assumed)
- Surge response functions from idealized ADCIRC simulations

Statistical Properties of Hurricane Surge Methodology – Surge Records and Statistical Estimates

- Record lengths: 25 yrs to 10000 yrs
- Up to 850 records generated per length (to convergence)
- HSR application:
 - POT: > 1.5 m
 - Parameterized fit: GEV when N >= 5 & Gumbel otherwise
 - Evaluated at x = 500 to 1500 km, at 10-km increments
- JPM-RF application:
 - $p(c_p, R_p, x) = \Lambda_1 \Lambda_2 \Lambda_5$ recomputed

Statistical Properties of Hurricane Surge Results – Record Length

2.3 m

T_p (yr)

10²

JPM – actual (1:1000) JPM – actual (1:10000)

- 0.26 m/0.85 m for 25-yr record
- 0.23 m/0.64 m for 50-yr record
- 0.20 m/0.47 m for 100-yr record
- About 1000 years of data needed for similar accuracy

Statistical Properties of Hurricane Surge Results – Record Length

- HSR RMS error:
 - 0.43 m/1.16 m for 25-yr record
 - 0.40 m/0.95 m for 50-yr record
 - 0.34 m/0.70 m for 100-yr record
 - More than 1000 years of data needed for similar accuracy

Statistical Properties of Hurricane Surge Results – Record Length

Ē

2.8 m

JPM – actual (1:1000) JPM – actual (1:10000)

10²

T_m (yr)

- HSR RMS error:
 - 0.52 m/1.29 m for 25-yr record
 - 0.48 m/1.09 m for 50-yr record
 - 0.43 m/0.85 m for 100-yr record
 - 1000s of years of data needed for similar accuracy

Statistical Properties of Hurricane Surge Results – Climate Variability (Rate of Occurrence)

- Assumed $\lambda(t)$:
 - 10 years of high activity: $\lambda(t) = 1.14$
 - 30 years of low activity: $\lambda(t) = 0.10$

HSR with 1:10000 slope

**6% yield insufficient data

Statistical Properties of Hurricane Surge Results – Alongshore Position (100-yr Return Period)

1:1000 slope

1:10000 slope

Statistical Properties of Hurricane Surge Results – Alongshore Position (500-yr Return Period)

1:1000 slope

1:10000 slope

Statistical Properties of Hurricane Surge Conclusions Summary – Revisited

- HSR accuracy limited by record length
- JPM-RF accuracy minimally impacted by record length
- Decadal scale climate variability introduces negligible error (except for short records and HSR)
- Short records yield insufficient data for HSR
- HSR yields vastly different results, depending on along-coast position
- JPM-RF yields same result, regardless of along-coast position