EPIRUS: An Integrated "Clouds-to-Coast" Ensemble Modelling Framework Of Coastal Flood Risk

Qingping Zou, Yongping Chen, Ian Cluckie, Richard Hewston, Xin Lv, Shunqi Pan, Zhong Peng, Dominic Reeve,

Capital Value of Assets at Flood Risk (£ billions)

		Region							
		Anglian	Midland	North East	North West	South West	Southern	Thames	Total
Fluvial	Property	10.7	14.1	7.8	2.9	3.9	4.6	28.6	72.5
	Agriculture	2.9	0.6	0.4	0.2	0.4	0.1	0.3	4.9
	Total	13.6	14.7	8.2	3.1	4.3	4.7	28.9	77.4
Sea/ Tidal	Property	9.7	1.8	10.4	7.8	2.9	13.8	81.3	127.8
	Agriculture	0.7	0.3	0.3	0.2	0.1	0.3	0.0	1.9
	Total	10.4	2.1	10.7	8.0	3.0	14.1	81.3	129.7
Total	Property	20.4	15.9	18.2	10.7	6.9	18.4	109.8	200.3
	Agriculture	3.6	0.9	0.7	0.4	0.5	0.4	0.3	6.8
	Grand Total	24.0	16.8	18.9	11.1	7.4	19.8	110.1	207.1

After MAFF (2001)

Coastal Flood and Erosion

- £132 billion assets at coastal flood risk
- £7.8 billion assets at coastal erosion risk
- 4 million people and properties in England and Wales at coastal flooding and erosion risk

Coastal Flood Defence Failure

• Functional failure:

Conditions exceed what the defence was designed for

• Structural failure:

Element or components of defence fail to perform as expected

- Wave overtopping

- Erosion of the back and crest of defence
- Damage to armour layers

– Toe scour

Leads to beach lowering

increase water depth

larger waves

more beach lowering

Undermining defence

Toe scour

Objectives

- To improve the capacity for predicting *coastal flood risk* due to *extreme events* and estimate the associated *uncertainty*
- To assess the propagation of uncertainty from meteorological forecasts to coastal flood risk predictions

Approach

a "clouds-to-coast", integrated modelling framework for ensemble prediction of coastal flood risk arising from overtopping and scour

"Clouds-to-coast" Ensemble Modelling Framework of Coastal Flood Risk

Ensemble Weather Forecasting Model

Dynamicaldownscaling approach from global to regional to local scale

Compromise between domain size and resolution

Hi-res wind and pressure forecast using WRF

Ensemble Prediction System (EPS)

EPIRUS – Meteorological component

Example:

• The "Great Storm" – 16th October 1987

- ERA40 boundary conditions
- Downscaling → high temporal (hourly) and spatial (~1km) wind and pressure fields for input in oceanographic models.

Wind and pressure fields at 03:00 on 16th Oct 1987, in three domains with increasing spatial resolution

Ensemble Prediction of Inundation Risk and Uncertainty arising from Scour (EPIRUS)

Tide, Surge & Wave Modelling

POLCOMS & ProWAM Models

WAM Model

Model Validations - Waves

Model Validations – Tides & Surge

Ensemble Modelling – Storm Tracks

Ensemble Modelling - Surges

Ensemble 39

Ensemble 46

Ensemble Modelling - Waves

Control

Ensemble 39

Ensemble 46

Surf Zone Model

1. Fluids:

- 3-D LES-VOF model-unstructure grid
- 2-D RANS-VOF model-structure grid
 - Overtopping of coastal structures

2. Sediments:

- Advection-diffusion equation
- Bedload transport model

3. Morphology:

- Sediment conservation equation over the whole water column
 - Scour

Numerical Model (2D RANS-VOF)

Governing equations:

Reynolds-Averaged Navier-Stokes equations (RANS)

Turbulence:

Algebraic nonlinear $k-\varepsilon$ turbulence model

Surface capture scheme:

Volume of Fluid (VOF)

VOF function, *f* :

$$f = \frac{\rho}{\rho_f}$$

 ρ_f : fluid density, ρ : averaged density

 $f = \begin{cases} 0 & empty \ cell \\ 1 & full \ cell \\ other & surface \ cell \end{cases}$

The transport equation for *f*:

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial x}(uf) + \frac{\partial}{\partial y}(vf) = 0$$

Numerical simulation setup

Free surface profile at *t*=1000 s and setup of numerical simulation.

Waves at the toe of seawall

Wave conditions at the toe of seawall (x=320 m): $H_{1/3}$ =1.68 m; T_m = 9.9747 s; T_p = 12.8 s.

Velocity vector at t=1025s

Velocity vector distribution at t=1025s around the seawall. Blue line is the free surface and yellow layer represents the seawall and foreshore with slope of 1:30

Results of wave overtopping

Predicted time series of accumulative overtopping volume

Overtopping discharge q calculated roughly after 12 waves. Red dotted line is the prediction by the empirical formula of TAW (2002) and blue solid line is simulation results

Overtopping volume per wave

Wave overtopping volume per wave cycle. t is the simulation time and T equals the peak period here.

Comparisons of discharge Q

Comparison of dimensionless overtopping discharge, Q, between numerical results and predictions of design formulae by Van der Meer and Janssen (1995) and TAW (2002)

3-D Simulation of Suspended Sediment Under breaking waves

3-D Wave Overtopping and run up over a steep Seawall

3-D Wave Overtopping over a Seawall

Random Wave Overtopping a Seawall

---Overtopping Discharge

Conclusions/Summary

- Weather forecasting, wave/surge and surf zone models have been identified and tested individually
- Good agreement between wave, tidel and surge prediction with observations
- Large uncertaity in ensemble predictions of surge and wave for 2004 storm
- Overtopping predictions in good agreement with published data
- Test sites and events have been selected
- Morphological model at testing stage

Future Work

- Ensemble run of surf zone model to create ensemble forecasts of overtopping and scour
- Big question: how best to use ensembles is mean necessarily the most useful?
- How Uncertainty propagate from meteorological forecasts to overtopping and coastal flooding risk predictions?

EPIRUS – Meteorological component

Aim: Dynamically downscale coarse climate data for severe storms \rightarrow high resolution wind and pressure fields

Methodology:

- Weather Research and Forecasting model (WRF)
 - Next-generation NWP and data assimilation system
 - WRF run in parallel across several nodes on high performance computer "Blue Ice"
- Initial focus on historic severe storms, before exploring impact of climate change
- Generating ensembles will allow estimate of uncertainty

Ref: Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M.G. Duda, X-Y. Huang, W. Wang, and J. G. Powers, 2005: A description of the advanced research WRF version 2. NCAR Tech. Note NCAR/TN-475+STR. 125pp

SWANSEA UNIVERSITY PRIFYSGOL ABERTAWE

Ensemble Prediction of Inundation Risk and Uncertainty arising from Scour (EPIRUS)

Thank you for your attention!

Model Scales

Numerical Model (3D LES Coupled LS & VOF)

Governing equations:

Filtered Navier-Stokes equations (LES)

$$\mathbf{C}\frac{\partial \mathbf{W}}{\partial \tau} + \mathbf{K}\frac{\partial \mathbf{W}}{\partial t} + \nabla \cdot \vec{\mathbf{F}}_{\mathbf{c}} = \nabla \cdot \vec{\mathbf{F}}_{\mathbf{v}} + \vec{\mathbf{S}}$$

Turbulence:

Dynamic Smagorinsky-Lilly SGS model. Only large turbulent eddies (equal to or larger than grid size) are simulated, the rest are modelled.

Surface capture scheme:

Coupled Level Set (LS) and Volume of Fluid (VOF)

VOF function, F:

LS function, φ :

$$\frac{\partial F}{\partial t} + u \cdot \nabla F = 0$$

$$\frac{\partial \varphi}{\partial t} + u \cdot \nabla \varphi = 0$$

3D Navier Stokes solver

Basic features:

- Unstructured grid based, higher-order Finite-Volume scheme (FV)
- Parallel computations (MPI)
- Multigrid, Dual-time stepping & implicit residual smoothing
- Fully implicit schemes available

Turbulence:

- Large-Eddy Simulation
- Novel Dynamic SGS model for free-surface simulations

Fluid-Structure Interaction:

- Structural dynamics solver integrated
- Parallel Immersed Boundary Method (IBM)

Free Surface capturing Model

- Newly developed interface capturing scheme for flows with violent free-surface motion
- Coupling of VOF and Level Set method renders its capabilities that:
 - Can capture the interface in a very sharp manner
 - Can simulate the surface tension effects
 - Can conserve the liquid mass very accurately
- Both single-phase and two-phase flow can be simulated
- Using Unstructured Meshes, surf zone simulations with complex geometry can now be considered without any difficulty
- Benefited from IBM, sea water interacting with offshore structures and the morphologic change of sea bed can be predicted

3D Dam Breaking Wave over an Obstacle --- Wave Impact

Ensemble Prediction System (EPS)

3D Navier Stokes solver

Basic features:

- Unstructured grid based, higher-order Finite-Volume scheme (FV)
- Parallel computations (MPI)
- Multigrid, Dual-time stepping & implicit residual smoothing
- Fully implicit schemes available

Turbulence:

- Large-Eddy Simulation
- Novel Dynamic SGS model for free-surface simulations

Fluid-Structure Interaction:

- Structural dynamics solver integrated
- Parallel Immersed Boundary Method (IBM)

Free Surface capturing Model

- Newly developed interface capturing scheme for flows with violent free-surface motion
- Coupling of VOF and Level Set method renders its capabilities that:
 - Can capture the interface in a very sharp manner
 - Can simulate the surface tension effects
 - Can conserve the liquid mass very accurately
- Both single-phase and two-phase flow can be simulated
- Using Unstructured Meshes, surf zone simulations with complex geometry can now be considered without any difficulty
- Benefited from IBM, sea water interacting with offshore structures and the morphologic change of sea bed can be predicted