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Motivation

* |n the past 10 years, a lot of SWAN studies have been
carried out for e.g., the Dutch goverment
* main motivations: assessing safety of sea defences and
operational wave forecasting
* studied areas: Scheldt estuaries, lakes (IJsselmeer) and
coast (Petten)

e currently, SBW project initiated at Deltares for studying
tidal inlets in the Wadden Sea

® General conclusion: wave heights are good, but wave
periods consistently underestimated

* Ask for some improvements in both accuracy and efficiency
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Methodology

* The usual SWAN approach is a finite difference, fixed,
regular grid solution to the action balance equation
employing the default third-generation formulations for deep
and shallow water

® Recently, an unstructured-mesh procedure is implemented
in SWAN
* Would that be a better approach for modelling and
understanding wave dynamics in tidal inlets?
® Recently, alternative source term parameterizations have
been proposed in the literature
* How about that? Are they useful?

~ October22,2000 . 38
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Summary of conclusions

* The parallel, unstructured version of SWAN is a good
alternative for tidal inlet studies

®* no nesting and no boundary condition issue
¢ achieve good speedups
* fully compatible with the regular-grid version
¢ SWAN should be applied with care, choose model settings
accordingly
* optimal settings is found for the Wadden Sea

e skillful in prediction of wave height and periods over
ebb-tidal delta and over shallow interior
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Tidal inlet of Ameland connecting the North Sea with the Dutch

Wadden Sea
. Ocober2z,2000 . 528
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Why unstructured grids?

¢ Contrary to curvi-linear grids, more flexibility in generating
grid as there are no restrictions (smoothness, orthogonality,
cell-aspect ratio, etc.)

® Accurate representation of irregular shorelines and islands
* High variability in geographic resolution

¢ Can take into account large scales in deep water (~ 100km)
and small scales in surf zone (~ 10m) in one mesh

* Nested grid problems in terms of correct dynamic coupling
and boundary condition discretization accuracy can be
avoided
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PUNSWAN

¢ implemented in the ADCIRC environment

* make use of the adcpr ep program:;
® controls domain decomposition for a parallel run
* METIS is called to do the actual grid partitioning

® creates sub-domain input files after decomposition

* make use of the ADCIRC module nessenger and MPI for
* |ocal exchanging at subdomain interfaces

* global reductions e.g., summation, maximum and
minimum over all subdomains
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Partitioned, unstructured mesh
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Parallel efficiency - IBM Power6 cluster

—@— PunSWAN
120 ————- linear speedup
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number of processors
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Physics

® General: underprediction of period measures in coastal
waters
* Other (more specific) observed inaccuracies in tidal inlets:

* Underestimation of penetration of low-frequency peak
wave energy over ebb-tidal delta

* Underestimation of finite depth wave growth in
near-horizontal beds
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Model formulation

* Wave energy represented by action density spectrum
N(x,y,t;0,0)

* Governed by the action balance equation:

ON -
- +Va-[(G+U)N|+
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ot B

Oo 00 o

® Source term S;.: describes physical modelling of wave
generation, dissipation and redistribution

- Ocober2z,2000 . 12p8
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wind whitecapping guadruplets

surf breaking friction triads
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Whitecapping

Based on Hasselmann (1974) and can be expressed as

~ m kf n
chap — _Cds % <§§m) (Z) E<07 9)
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Whitecapping

Based on Hasselmann (1974) and can be expressed as

S = -Car () (5)F £t

Spm k

where (atunable parameter, which controls the
redistribution of dissipation over frequencies
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Whitecapping

Based on Hasselmann (1974) and can be expressed as

S = -Car () (5)F £t

Spm k

where Qunable parameter, which controls the
redistribution of dissipation over frequencies

y

1 Komen et al. (1984)
\ 2 Rogers et al. (2003)

n = <

The n = 2 setting effectively removes underprediction of
periods observed with the n = 1 setting
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Depth-induced breaking (1)

Modelled by the bore-based dissipation model of Battjes
and Janssen (1978):

with
1 o
Dyt = _ZQBJQb<%)H12naX

and ag; = 1 and @), Is fraction of breaking waves
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Depth-induced breaking (2)

The maximum wave height H,,, IS given by

HmaX: YBJ d
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Depth-induced breaking (2)

The maximum wave height H,,, IS given by

—

where ~g; Is the breaker parameter:
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Depth-induced breaking (2)

The maximum wave height H,,, IS given by

—

where ~g; Is the breaker parameter:

)
0.73 Battjes and Janssen (1978)
| 0.76kpd +0.29 Ruessink et al. (2003)

YBJ = {

Parameterization of Ruessink et al. (2003) improves finite
depth results for a nearly horizontal bed

(Van der Westhuysen, 2009; SBW project)
© Oewberz,2000 18
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Bottom friction

Bottom friction is modelled by the JONSWAP formulation
(Hasselmann et al., 1973):

Sbot = — Ch
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Bottom friction

Bottom friction is modelled by the JONSWAP formulation
(Hasselmann et al., 1973):

2

o)
Sho :— E(0,0
) J‘gzsmh%d) (.0)

where cbfisa tunable friction parameter:

%
Environmental Fluid Mechanics Section TUDelft



Bottom friction

Bottom friction is modelled by the JONSWAP formulation
(Hasselmann et al., 1973):

2

o)
Sho :— E(0,0
) J‘gzsmh%d) (.0)

where cbga tunable friction parameter:

)
0.038m?s™2 (swell)

Ch = ¥
\ 0.067m?s~3 (fully-developed sea)

Now: Ci, = 0.038m?s* for both swell and low frequencies
INn wind-sea spectrum
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Default settings

* Deep water source terms:
e wind input based on Yan (1987)
® saturation-based whitecapping of Alves and Banner
(2003)
* DIA for quadruplets (Hasselmann et al., 1985)

¢ Shallow water source terms:
* LTA for triads (Eldeberky, 1996)
* depth-induced breaking: yg3 = 0.73 (Battjes and
Janssen, 1978)

e JONSWAP for bottom friction: C}, = 0.067m?s 3
(Hasselmann et al., 1973; Bouws and Komen, 1983)

%
Environmental Fluid Mechanics Section TUDelft



Optimal settings

* Deep water source terms:
* wind input based on Snyder et al. (1981)

* modified whitecapping expression of Rogers et al. (2003)
* DIA for quadruplets (Hasselmann et al., 1985)

¢ Shallow water source terms:

¢ switch off LTA triads since transfer to higher frequencies
often overestimated

¢ depth-induced breaking of BJ78 with breaker index
parameterization of Ruessink et al. (2003)

e JONSWAP for bottom friction: C}, = 0.038m?s3

(Hasselmann et al., 1973)
~ Ocober22,2000 18
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Selected storm instants

date and time Uig (M/S) | Ugir (°N)
11/01/2007, 13h00 19.6 228
11/01/2007, 22h40 19.6 279
18/01/2007, 14h00 20.4 263
18/03/2007, 10h00 14.3 279
18/03/2007, 14h40 18.5 266

These instants are around the peak of the westerly storms with

relatively high wind speeds
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Measurement locations in Wadden Sea

L
transect AZB11-AZB6

transect AZB12-AZB62

Measurement poles
(2008)

Ameland tidal inlet

@® waves
O wind
@ water level

Courtesy of Deltares, The Netherlands
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Model vs. measured: default settings

bias = -0.032m, SI = 0.186
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Model vs. measured: optimal settings

bias = 0.032m, SI = 0.183 bias = 0.012s, SI = 0.184 bias = -0.081s, SI = 0.12
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Concluding remarks (1)

* Use of UnSWAN for e.g.,
¢ determination of wave climates and
* hindcasting and forecasting storms
* As computational codes evolve with improvements in
computer hardware, we should

* add new or better physics to match the computational
capabilities and accuracy

¢ develop algorithms to handle multiscale physics and
Increasing grid resolution

* More focus on wave features associated with irregular

bathymetry, e.qg. surf zones
~ October22,2000 o8
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Concluding remarks (2)

* A parallel, unstructured version of SWAN has been
developed and tested on Linux clusters

* Many known laboratory and field cases have been verified
and validated and have shown

® comparable results to that of regular grids and

® expected results as indicated by the for SWAN typical
bias and Sl values

* Achieve good speedups and is scalable

e UnSWAN is available in the official release, version 40.72
see website www.swan.tudelft.nl
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