Application of UnSWAN for wave hindcasting in the Dutch Wadden Sea

11th Waves Workshop

Marcel Zijlema

October 22, 2009

1/28

Environmental Fluid Mechanics Section

Delft University of Technology

Motivation

- In the past 10 years, a lot of SWAN studies have been carried out for e.g., the Dutch goverment
 - main motivations: assessing safety of sea defences and operational wave forecasting
 - studied areas: Scheldt estuaries, lakes (IJsselmeer) and coast (Petten)
 - currently, SBW project initiated at Deltares for studying tidal inlets in the Wadden Sea
- <u>General conclusion</u>: wave heights are good, but wave periods consistently underestimated
- Ask for some improvements in both accuracy and efficiency

October 22, 2009

Environmental Fluid Mechanics Section

Methodology

- The usual SWAN approach is a finite difference, fixed, regular grid solution to the action balance equation employing the default third-generation formulations for deep and shallow water
- Recently, an unstructured-mesh procedure is implemented in SWAN
 - Would that be a *better* approach for modelling and understanding wave dynamics in tidal inlets?
- Recently, alternative source term parameterizations have been proposed in the literature
 - How about that? Are they useful?

October 22, 2009

Summary of conclusions

- The parallel, unstructured version of SWAN is a good alternative for tidal inlet studies
 - no nesting and no boundary condition issue
 - achieve good speedups
 - fully compatible with the regular-grid version
- SWAN should be applied with care, choose model settings accordingly
 - optimal settings is found for the Wadden Sea
 - skillful in prediction of wave height and periods over ebb-tidal delta and over shallow interior

Tidal inlet of Ameland connecting the North Sea with the Dutch Wadden Sea

October 22, 2009

Environmental Fluid Mechanics Section

Nested curvi-linear grids with offshore boundary conditions

October 22, 2009

6/28

Why unstructured grids?

- Contrary to curvi-linear grids, more flexibility in generating grid as there are no restrictions (smoothness, orthogonality, cell-aspect ratio, etc.)
- Accurate representation of irregular shorelines and islands
- High variability in geographic resolution
- Can take into account large scales in deep water ($\sim 100 km$) and small scales in surf zone ($\sim 10m$) in one mesh
- Nested grid problems in terms of correct dynamic coupling and boundary condition discretization accuracy can be avoided

PUnSWAN

- implemented in the ADCIRC environment
- make use of the <u>adcprep</u> program:
 - controls domain decomposition for a parallel run
 - METIS is called to do the actual grid partitioning
 - creates sub-domain input files after decomposition
- make use of the ADCIRC module messenger and MPI for
 - local exchanging at subdomain interfaces
 - global reductions e.g., summation, maximum and minimum over all subdomains

Partitioned, unstructured mesh

October 22, 2009

Parallel efficiency - IBM Power6 cluster

October 22, 2009

10/28

Physics

- General: underprediction of period measures in coastal waters
- Other (more specific) observed inaccuracies in tidal inlets:
 - Underestimation of penetration of low-frequency peak wave energy over ebb-tidal delta
 - Underestimation of finite depth wave growth in near-horizontal beds

Model formulation

- Wave energy represented by action density spectrum $N(x,y,t;\sigma,\theta)$
- Governed by the action balance equation:

$$\frac{\partial N}{\partial t} + \nabla_{\vec{x}} \cdot \left[(\vec{c}_g + \vec{U})N \right] + \frac{\partial c_\sigma N}{\partial \sigma} + \frac{\partial c_\theta N}{\partial \theta} = \frac{S_{\text{tot}}}{\sigma}$$

• Source term S_{tot} describes physical modelling of wave generation, dissipation and redistribution

wind whitecapping quadruplets

October 22, 2009

Environmental Fluid Mechanics Section

Whitecapping

Based on Hasselmann (1974) and can be expressed as

$$S_{\text{wcap}} = -C_{\text{ds}} \,\tilde{\sigma} \, \left(\frac{\tilde{s}}{\tilde{s}_{\text{pm}}}\right)^m \left(\frac{k}{\tilde{k}}\right)^n \quad E(\sigma,\theta)$$

October 22, 2009

14/28

TUDelft

A

Whitecapping

Based on Hasselmann (1974) and can be expressed as

$$S_{\text{wcap}} = -C_{\text{ds}} \,\tilde{\sigma} \, \left(\frac{\tilde{s}}{\tilde{s}_{\text{pm}}}\right)^m \left(\frac{k}{\tilde{k}}\right)^{n} E(\sigma,\theta)$$

where n is a tunable parameter, which controls the redistribution of dissipation over frequencies

14/28

Whitecapping

Based on Hasselmann (1974) and can be expressed as

$$S_{\text{wcap}} = -C_{\text{ds}} \,\tilde{\sigma} \, \left(\frac{\tilde{s}}{\tilde{s}_{\text{pm}}}\right)^m \left(\frac{k}{\tilde{k}}\right)^{n} E(\sigma,\theta)$$

where $\frac{1}{n}$ is a tunable parameter, which controls the redistribution of dissipation over frequencies

$$n = \begin{cases} 1 & \text{Komen et al. (1984)} \\ 2 & \text{Rogers et al. (2003)} \end{cases}$$

The n = 2 setting effectively removes underprediction of periods observed with the n = 1 setting

October 22, 2009

Environmental Fluid Mechanics Section

Depth-induced breaking (1)

Modelled by the bore-based dissipation model of Battjes and Janssen (1978):

$$S_{\rm brk} = D_{\rm tot} \frac{E(\sigma, \theta)}{E_{\rm tot}}$$

with

$$D_{\rm tot} = -\frac{1}{4} \alpha_{\rm BJ} Q_b(\frac{\tilde{\sigma}}{2\pi}) H_{\rm max}^2$$

and $\alpha_{BJ} = 1$ and Q_b is fraction of breaking waves

October 22, 2009

Environmental Fluid Mechanics Section

Depth-induced breaking (2)

The maximum wave height $H_{\rm max}$ is given by

 $H_{\rm max} = \gamma_{\rm BJ} d$

October 22, 2009

Environmental Fluid Mechanics Section

Depth-induced breaking (2)

The maximum wave height $H_{\rm max}$ is given by

October 22, 2009

16/28

Depth-induced breaking (2)

The maximum wave height $H_{\rm max}$ is given by

where $\gamma_{\rm BJ}$ is the breaker parameter:

 $\gamma_{\rm BJ} = \begin{cases} 0.73 & \text{Battjes and Janssen (1978)} \\ 0.76k_{\rm p}d + 0.29 & \text{Ruessink et al. (2003)} \end{cases}$

Parameterization of Ruessink et al. (2003) improves finite depth results for a nearly horizontal bed (Van der Westhuysen, 2009; SBW project)

16/28

Delft

October 22, 2009

Bottom friction

Bottom friction is modelled by the JONSWAP formulation (Hasselmann et al., 1973):

$$S_{\rm bot} = -C_{\rm b} \frac{\sigma^2}{g^2 \sinh^2(kd)} E(\sigma,\theta)$$

October 22, 2009

17/28

Bottom friction

Bottom friction is modelled by the JONSWAP formulation (Hasselmann et al., 1973):

$$S_{\rm bot} = -C_{\rm b} \frac{\sigma^2}{g^2 {\rm sinh}^2(kd)} E(\sigma, \theta)$$

where $C_{\rm b}$ is a tunable friction parameter:

October 22, 2009

17/28

Bottom friction

Bottom friction is modelled by the JONSWAP formulation (Hasselmann et al., 1973):

$$S_{\rm bot} = -\underbrace{C_{\rm b}}_{f} \frac{\sigma^2}{g^2 {\rm sinh}^2(kd)} E(\sigma,\theta)$$

where $C_{\rm b}$ is a tunable friction parameter:

$$C_{\rm b} = \begin{cases} 0.038m^2s^{-3} & \text{(swell)} \\ 0.067m^2s^{-3} & \text{(fully-developed sea)} \end{cases}$$

Now: $C_{\rm b} = 0.038m^2s^{-3}$ for both swell and low frequencies in wind-sea spectrum

October 22, 2009

Environmental Fluid Mechanics Section

Default settings

- Deep water source terms:
 - wind input based on Yan (1987)
 - saturation-based whitecapping of Alves and Banner (2003)
 - DIA for quadruplets (Hasselmann et al., 1985)
- Shallow water source terms:
 - LTA for triads (Eldeberky, 1996)
 - depth-induced breaking: $\gamma_{\rm BJ}=0.73$ (Battjes and Janssen, 1978)
 - JONSWAP for bottom friction: $C_{\rm b} = 0.067 m^2 s^{-3}$ (Hasselmann et al., 1973; Bouws and Komen, 1983)

October 22, 2009

Optimal settings

- Deep water source terms:
 - wind input based on Snyder et al. (1981)
 - modified whitecapping expression of Rogers et al. (2003)
 - DIA for quadruplets (Hasselmann et al., 1985)
- Shallow water source terms:
 - switch off LTA triads since transfer to higher frequencies often overestimated
 - depth-induced breaking of BJ78 with breaker index parameterization of Ruessink et al. (2003)
 - JONSWAP for bottom friction: $C_{\rm b} = 0.038m^2s^{-3}$ (Hasselmann et al., 1973)

October 22, 2009

TUDelft

Selected storm instants

date and time	U ₁₀ (m/s)	<i>U</i> _{dir} (^{<i>o</i>} N)
11/01/2007, 13h00	19.6	228
11/01/2007, 22h40	19.6	279
18/01/2007, 14h00	20.4	263
18/03/2007, 10h00	14.3	279
18/03/2007, 14h40	18.5	266

These instants are around the peak of the westerly storms with relatively high wind speeds

October 22, 2009

Environmental Fluid Mechanics Section

Measurement locations in Wadden Sea

Courtesy of Deltares, The Netherlands

October 22, 2009

October 22, 2009

Environmental Fluid Mechanics Section

October 22, 2009

Environmental Fluid Mechanics Section

Model vs. measured: default settings

October 22, 2009

24/28

Model vs. measured: optimal settings

October 22, 2009

25/28

default settings

optimal settings

October 22, 2009

Environmental Fluid Mechanics Section

Concluding remarks (1)

- Use of UnSWAN for e.g.,
 - determination of wave climates and
 - hindcasting and forecasting storms
- As computational codes evolve with improvements in computer hardware, we should
 - add new or better physics to match the computational capabilities and accuracy
 - develop algorithms to handle multiscale physics and increasing grid resolution
- More focus on wave features associated with irregular bathymetry, e.g. surf zones

October 22, 2009

Concluding remarks (2)

- A parallel, unstructured version of SWAN has been developed and tested on Linux clusters
- Many known laboratory and field cases have been verified and validated and have shown
 - comparable results to that of regular grids and
 - expected results as indicated by the for SWAN typical bias and SI values
- Achieve good speedups and is scalable
- UnSWAN is available in the official release, version 40.72 see website www.swan.tudelft.nl

