Validation of a multi-grid WAVEWATCH III[™] modeling system

Arun Chawla¹, Hendrik L. Tolman², Jeffrey L. Hanson³, Eve-Marie Devalier⁴ and Vera M. Gerald²

¹Science Application International Corporation at NCEP ²MMAB/EMC/NCEP/NWS/NOAA Camp Springs MD ³USACE Field Research Facility, Duck NC ⁴University of North Carolina/USACE Field Research Facility, Duck NC

MOTIVATION

New operational system since November 2007,

- ➤ A single multi-grid model (WAVEWATCH IIITM v 3.14) replacing suite of earlier models
- Hindcast database available for detailed multi-year validation study.
- A new data analysis system (IMEDS)
 - > quantifies skill of individual wave components (wind seas and swells)
- A four year NOPP initiative to improve physics of 3rd generation wind wave models
 - Initiative is in its nascent stages.
 - ➤ WAVEWATCH IIITM to be a modeling test bed for many of the participants
 - This study provides a baseline skill (in an operational setting)

MODEL – DATA comparisons

Modeling System

- ➤ 8 grid global system using the two-way coupled multigrid WAVEWATCH IIITM model
- Model forced with GFS winds and sea ice derived from daily passive microwave analysis
- Analysis
 - Analysis includes regular forecasts (4 cycles a data) and a 5 year hindcast (2005-2009)
 - Collocated model altimeter comparisons with Jason-1 satellite data
 - Comparison of bulk spectral parameters with a global network of buoys
 - Spectral analysis (at select buoy locations) with IMEDS (Interactive Model Evaluation and Diagnostics System)

CONCLUSIONS

A persistent positive bias (wave heights) in the Southern Hemisphere.

- Development of bias coincides with the GFS winds becoming more energetic in this region
- Seasonal bias patterns in the Northern Hemisphere
 - Positive biases in the swell dominated eastern parts of the basin
 - Negative biases in the wind wave dominated western parts of the basin
- Spectral analysis shows
 - Negative biases in wind waves
 - Swell picture is more complex
 - Positive biases in the US West Coast buoys
 - Negative biases in the US East Coast buoys
 - Mixed (positive and negative) biases in the Alaska buoys

MODEL GRIDS

Grid resolution in minutes

MODEL – ALTIMETER COMPARISONS

- Model skill assessment done using collocated altimeter (Jason-1 satellite) and model data
- Collocation done for 9 periods (hindcast, nowcast, and 1 7 day forecast)
- Error estimates (Scatter Index and bias) developed using month long archives
- Altimeter data de-spiked (also removes island features that are not resolved by the model) and filtered
- Error maps developed using 3 month records (to provide statistically significant sample sizes) and binning the data in 2° X 2° bins

MODEL – ALTIMETER COMPARISONS (contd.)

Hindcast Bias Maps

Chawla et al, Oct 2009

11th Waves workshop Halifax, 9/22

Buoy Data

•Global network of buoy data, quality controlled and archived at ECMWF as part of interagency model comparison project.

•Hourly buoy data averaged over 4 hr interval, centered at the 4 synoptic time cycles of wave forecasts (0,6,12 and 18)

BUOY COMPARISONS (contd.)

ALASKA Buoys

US East Coast Buoys

Chawla et al, Oct 2009

11th Waves workshop Halifax, 11/22

BUOY COMPARISONS (contd.)

US West Coast Buoys

European Buoys

11th Waves workshop Halifax, 12/22

Chawla et al, Oct 2009

Chawla et al, Oct 2009

BUOY COMPARISONS (contd.)

Southern Hemisphere Buoys

Australia Buoys

11th Waves workshop Halifax, 13/22

GFS wind speed statistics (over water)

Southern Hemisphere (60°S to 25°S)

Northern Hemisphere (25°N to 60°N)

Chawla et al, Oct 2009

11th Waves workshop Halifax, 14/22

Interactive Model Evaluation and Diagnostics System (IMEDS)

Methodology

- A diagnostic analysis tool for wind wave models developed by USACE (Hanson et al 2009)
- IMEDS provides additional information on model skill by
 - Using a partitioning algorithm to separate individual peaks in the spectrum of the data
 - Use partition boundaries to identify model and data component attributes
 - Do error analysis over individual components and develop error metrics and skill scores
- IMEDS separates spectral peaks into 3 types wind waves, young and mature swells
- Directional age criterion to separate wind waves from swells
- Frequency cut-off to separate young and mature swells

11th Waves workshop Halifax, 15/22

IMEDS (contd.)

Atlantic buoys

Chawla et al, Oct 2009

11th Waves workshop Halifax, 16/22

41012 - Jan,2008

41012 – Jun,2008

41012 - Dec,2008

Chawla et al, Oct 2009

11th Waves workshop Halifax, 17/22

IMEDS (contd.)

Pacific Buoys

11th Waves workshop Halifax, 18/22

Chawla et al, Oct 2009

46002 - Jan,2008

46002 - Dec,2008

46022 – Jan,2008

46022 – Jun,2008

46022 - Dec,2008

Chawla et al, Oct 2009

11th Waves workshop Halifax, 19/22

IMEDS (contd.)

Alaska buoys

Chawla et al, Oct 2009

11th Waves workshop Halifax, 20/22

46001-Jan,2008

46001 – Jun,2008

46001 - Dec,2008

46072 – Jan,2008

46072 – Jun,2008

46072 - Dec,2008

Chawla et al, Oct 2009

11th Waves workshop Halifax, 21/22

CONCLUSIONS

A persistent positive bias (wave heights) in the Southern Hemisphere.

- Development of bias coincides with the GFS winds becoming more energetic in this region
- Seasonal bias patterns in the Northern Hemisphere
 - Positive biases in the swell dominated eastern parts of the basin
 - Negative biases in the wind wave dominated western parts of the basin
- Spectral analysis shows
 - Negative biases in wind waves
 - Swell picture is more complex
 - Positive biases in the US West Coast buoys
 - Negative biases in the US East Coast buoys
 - Mixed (positive and negative) biases in the Alaska buoys

CONCLUDING REMARKS

- Bias patterns indicate the need to re-visit the tuning parameters in WAVEWATCH
- IMEDS analysis shows that the model
 - Slightly under predicts the wave heights in the wind wave component
 - Over predicts the wave heights for swells propagating large distances (maybe)
- Swell dissipation in WAVEWATCH is primarily a tuning parameter
- Ardhuin et al (2009) show swell dissipation to be a nonlinear process related to wave steepness
- Tuning WAVEWATCH parameters may be delayed till after we get the new physics in (NOPP initiative)