

Spherical Multiple-Cell Grid to cover the Arctic

Jian-Guo Li 21 Oct 2009

© Crown copyright Met Office

Arctic ice by ESA Envisat ASAR in September 2007 and 2008

Arctic ice is retreating.

Global wave model needs extension to cover the Arctic.

Light brown: ice appear in both Septembers.

Dark brown: ice free in Sept 2008 but covered in Sept 2007.

Blue: ice free in Sept 2007 but covered in 2008.

Highest ice-free latitude 86°, present model 82°.

Worst scenario: Arctic ice free in summer 2030 (?)

© Crown copyright Met Office

Polar problem with standard grid

Met Office

STD Grid 128x64 Projection Pole -60.0°E 45.0°N

Transportation equation in spherical system:

$$\frac{\partial \psi}{\partial t} + \frac{\partial (u\psi)}{\partial x} + \frac{\partial (\upsilon\psi\cos\varphi)}{\cos\varphi\partial y} = 0$$

The Pole is a singular point Flow has to go around it, not crossing it.

Severe CFL restriction on Eulerian advection time step near the Pole.

Disparity in space resolution

E_{<1/3}=145, P_{<1/3}=896.

SMC Grid Projection Pole -60.0°E 45.0°N Rotation Pole 180.0°E 0.0°N

Summary and conclusions

Met Office

- Spherical Multiple-Cell (SMC) grid is developed to solve the polar transportation problem in global lat-lon grid for application in ocean surface wave model.
- A round polar cell is introduced with integral conservation equation to remove the Pole singularity and enable cross-pole transportation.
- Solid-body rotation tests are used to demonstrate the performance of SMC grid with Upstream Non-Oscillatory (UNO) advection schemes.
- Application of SMC grid in global ocean surface shows its unstructured flexibility and transportation efficiency, saving 45% in memory and computation.
- Numerical results confirm that SMC grid with UNO schemes are suitable for global, including cross-pole, transportation.

This presentation covers the following areas

- The polar transportation problem
- Spherical Multiple-Cell (SMC) grid
- Solid-body rotation test
- SMC grid for global ocean surface
- Wave spectral transport in the Arctic
- Summary and conclusions

Polar problem with reduced grid

Met Office

Reduced grid (Rasch 1994) relaxes the CFL restriction at high latitudes. But the polar singularity remains unsolved.

The Pole is still a singular point and flow has to go around it, not crossing it.

SMC grid with a round polar cell

Met Office

Conservation equation for the polar cell:

$$\frac{\partial}{\partial t} \iint_{A} \psi \, dA = - \prod_{C_A} \psi \, \mathbf{v} \cdot d\mathbf{s}$$

Discrete form:

$$\psi_P^{n+1} - \psi_P^n = \pm \frac{\Delta t}{A_P} \sum_{i=1}^m \psi_i^* \upsilon_i \Delta s_i$$

Singularity removed;

Instance cross-pole transportation enabled

Upstream Non-Oscillatory (UNO) advection schemes

 $\psi_{j}^{n+1} = \psi_{j}^{n} + \left(u_{j-1/2}\psi_{j-1/2}^{MF} - u_{j+1/2}\psi_{j+1/2}^{MF}\right)\Delta t / \Delta x_{j}$

 $\psi_{i+1/2}^{MF} = \psi_{C}^{n} + (x_{MF} - x_{C})G_{C}$

Details see:

Li, J.G. (2008) *Mon. Wea. Rev.*, **136**, 4709-4729.

UNO2
You Know Too
$$G_{C} = Sign(G_{DC})\min(|G_{DC}|, |G_{CU}|) \qquad G_{AB} \equiv (\psi_{A} - \psi_{B})/(x_{A} - x_{B})$$

$$G_{C} = G_{DC} - \frac{4(x_{D} - x_{MF})}{3} \left(\frac{G_{DC} - G_{CU}}{x_{D} - x_{U}} \right) \qquad for |G_{DC} - G_{CU}| \le 1.2 |G_{DU}|;$$
UNO3
$$Else \quad G_{C} = 2Sign(G_{DC})\min(|G_{DC}|, |G_{CU}|) \qquad for \ G_{DC}G_{CU} > 0$$

$$Otherwise \quad G_{C} = Sign(G_{DC})\min(|G_{DC}|, |G_{CU}|)$$

 $x_{MF} - x_{C} = 0.5 sign(u_{i+1/2}) (\Delta x_{C} - |u_{i+1/2}| \Delta t)$

- Internal and boundary faces are treated alike in 1-D array. No boundary for global model.
- Single point island is extended by 0-cells, allowing singleisland blocking.
- Two-D spherical surface advection is done by 3 loops: uand v-face flux loops and cell update loop.

Details see: Li, J.G. (2003) *Bounary-Layer Meteorology,.* **107**, 289-322. Right boundary face

Non-divergent 2-D flow on the spherical surface

$$u = \omega r \Big[\cos \alpha \cos \varphi - \sin \alpha \sin \varphi \cos \left(\lambda - \lambda_P \right) \Big]$$
$$\upsilon = \omega r \sin \alpha \sin \left(\lambda - \lambda_P \right), \qquad \alpha \equiv \pi/2 - \varphi_P$$

Where *r* is radius, λ longitude, ϕ latitude.

The rotation pole is at $(\lambda_P, \varphi_P) = (180^\circ, 0^\circ)$ and the constant angular speed $\omega = 10^\circ$ per hour.

Spherical Step Function (SSF) solid-body rotation on SMC 1° grid UNO3 scheme

SSF s-b rotation on SMC 1° grid with UNO3 scheme

SSF s-b rotation on SMC 1° grid with UNO3 and UNO2 schemes

SMC 40 km grid for global model

SMC grid total cell number 167 944, reduction 45%

© Crown copyright Met Office

SMC grid single points islands

Met Office

0 1 2 3 4

0 1 2

© Crown copyright Met Office

Arctic part > 66° N Fixed reference dir.

Lower part 50-66°N Std local east dir.

Two rows of extra cells as boundaries for each parts.

Initial wave spectral as typical wind-sea.

Peak direction at 60° from reference dir., local east in lower part and fixed dir in Arctic part

$$E(\theta) = \begin{cases} E_0 \cos^2(\theta - \pi/3), & \text{for } |\theta - \pi/3| \le 0, \\ 0, & \text{Otherwise} \end{cases}$$

0.000E+00

Wave spectral transport in Arctic

50.0° N

SMC

UNO3

5

50.0° N 6.0° 6.0° 160 160 SMC 2,4520 - -2.1390

UNO2

5

0.000E+00

Summary and conclusions

Met Office

- Spherical Multiple-Cell (SMC) grid is developed to solve the polar transportation problem in global lat-lon grid for application in ocean surface wave model.
- A round polar cell is introduced with integral conservation equation to remove the Pole singularity and enable cross-pole transportation.
- Solid-body rotation tests (SSF and CB) and spherical deformation test are used to demonstrate the performance of SMC grid with Upstream Non-Oscillatory (UNO) advection schemes.
- Application of SMC grid in global ocean surface shows its unstructured flexibility and transportation efficiency, saving 45% in memory and computation.
- Numerical results confirm that SMC grid with UNO schemes are suitable for global, including cross-pole, transportation.

SMC Grid Polar Views --- 40 km

Met Office

Regular lat-lon grid 480*640 = 307,200 SMC grid 167,944 reduction 45% 10000 1000 100 10 Depth (m) NPo=1 N64=10 N32 = 60N16 = 200N8= 783 N4=2545 N2=14619 N1=149726 NC=167944 Spherical Multiple-Cell Grid © Crown copyright Met Office

Pole blocking on reduced grid

SMC 1° grid with polar cells

Polar= 2N32= 20

N16= 80 N8= 240 Polar singularity removed by using round polar cells.

Integration equ. replaces differential one for polar cells.

Max size-32 cells next to polar cells.

 $\Delta\lambda$ =1.125° $\Delta\phi$ =1°

Regular 320x180=57,600 SMC 45,302 Reduced 21%

SMC 1° Grid View Point 60.0°W 45.0°N Rotation N Pole 180.0°E 0.0°N

Cosine bell solid-body rotation

Spherical deformation flow on SMC 1° grid with UNO3 scheme

Spherical deformation flow on SMC grid with UNO3 scheme

Comparison of ULTks and UNO2 in wave model

© Crown copyright Met Office

Met Office

Implicit diffusion of UNO2/3

© Crown copyright Met Office

NAEWW3 Model domain

NAEW bathymetry on rotated grid, contour height in m

longitudes : latitudes