### Predicting the Wave Breaking Onset

#### Alexander Babanin, Dmitry Chalikov, lan Young and Alina Galchenko

Swinburne University of Technology, Melbourne, Australia

Wave Forecasting and Hindcasting Workshop Halifax, Canada 21 October 2009



SWINBURNE UNIVERSITY OF TECHNOLOGY

#### Acknowledgements

- Mark Donelan, University of Miami
- Ivan Savelyev, University of Miami
- Tai-Wen Hsu, National Chen Kung University, Taiwan

#### Why the waves break?



- Motivation: lack of understanding of incipient breaking (asymmetry)
- What theory can reproduce asymmetric waves?







FIG. 5. Average nondimensional profiles of the near-breaking waves observed at 10 m/s wind speed for (a) pure wind waves at various fetches between 15 and 30 m, and (b) pure wind waves (solid line) and mechanically generated waves amplified by wind (dash-dotted line). The typical evolution of the standard deviation of the nondimensional water height distribution along these profiles is shown in (a) (dashed line). Here  $a_e$  is the wave crest height.

OCEANOGRAPHY

VOLUME 36

skewness<sub>i</sub> = 0.45, skewness<sub>p</sub> = 0.31, kurtosis<sub>i</sub> = 3.34, kurtosis<sub>p</sub> = 2.96, asymmetry<sub>i</sub> = -0.186, and asymmetry<sub>p</sub> = -0.017. (11)

#### Young and Babanin, JPO, 2006



Real waves: -Black Sea - ASIST

## What theory can reproduce asymmetric waves?



Same H and ,

### Chalikov-Sheinin Model



Available online at www.sciencedirect.com

Journal of Computational Physics 210 (2005) 247-273

JOURNAL OF COMPUTATIONAL PHYSICS

www.elsevier.com/locate/jcp

- fully non-linear
- very high precision
- stable for hundreds of periods
- coupled with atmosphere



CSM: steep wave developing asymmetry

Dmitry Chalikov <sup>a,\*</sup>, Dmitry Sheinin <sup>b</sup>

Modeling extreme waves based on equations of potential

flow with a free surface

## Numerical Simulations of Wave Evolution





Individual waves, from start to breaking

IMS = 0.26, U/c = 2.5, U/c = 5.0

Initial skewness and asymmetry are zero

 $S_k$  and  $A_s$  oscillate

Wind doubles, distance to breaking reduces 4 times

Dyachenko & Zakharov (2005)

Fully non-linear model

kH/2 = 0.44



Shape is different from the Stokes shape

#### Numerical Simulations. Distance to Breaking



If IMS > 0.3, waves will break immediately

If *IMS* < 0.1, waves with no wind forcing will never break

Between the limits, dimensionless distance to breaking decreases if *IMS* increases

Wind:

- Accelerates wave steepness growth
- Can reduce the critical steepness if strong (U/c > 10)
- Affects the breaking severity

#### Laboratory Experiment at ASIST, RSMAS, University of Miami





- near-monochromatic two-dimensional deep-water mechanically-generated waves
- recorded at 4.55m, 10.53m, 11.59m and 12.56m from the wave maker
- *IMS* varied to make the waves break just after one of the wave probes
- the fact that breaking could be predicted and controlled by manipulating steepness only is a powerful corroboration of the numerical model
- qualitative rather than exact quantitative agreement is expected: no modes, no three-dimensional crest instability in the model

#### **Experiment.** Time Series

4.55 m, *IMF* = 1.6Hz

U/c = 0, IMS = 0.31, 0.25, 0.23



IMS = 0.23, U/c = 0, 1.4, 11

Modulational Index defines number of waves in the modulation:

$$M_I = \frac{\epsilon}{\Delta f / f_0}$$

U/c = 0, IMS = 0.23, 7.5 waves U/c = 11, IMS = 0.23, 7.5 waves, modulation smeared

10.53 m, *IMF* = 1.6Hz

U/c = 0, IMS = 0.31, 6 waves

U/c = 0, IMS = 0.25, 7 waves



#### Experiment. Time Series Analysis

• IMF = 1.8Hz, IMS = 0.30, U/c = 0, breaking immediately after the 10.73 m probe

- note a conceptual change in the frame of reference compared to the numerical model results
- major features seen in the numerical model are confirmed



- incipient breaking waves are the steepest waves in the wave train
- steepness, skewness and asymmetry oscillate. Asymmetry is shifted
- at the point of breaking  $S_k$  is maximal,  $A_s$  is small, frequency is increased

#### Experiment. The Incipient Breaking!





#### Incipient Breaking Statistics. Top 5



asymptotic limit of kH/2~0.44

# Number of wave lengths to the breaking versus *IMS*.



• No wind forcing, except filled green circles

• Red squares derived from Melville (1982)

- *IMS* > 0.44, break immediately
- *IMS* < 0.08, never break in the absence of wind forcing



## Wind-Forced Breaking



- overall pattern, i.e. breaking onset etc. is the same
- modulation and dissipation are not the same



without the wind

 $R = rac{H_h}{H_l}$  modulation

with the wind (U/c=3.9)

before (solid line) and after (dashed) the breaking

#### Laboratory Experiment at National Chen Kung University, Taiwan





24m long, 1.3m high and 1m wide

#### Laboratory Experiment at National Chen Kung University, Taiwan



### Implications for Field Conditions

- waves are three-dimensional
- notion of an initial monochromatic steepness does not exist
- however, should waves reach critical steepness then they will break
- other processes can negotiate the critical steepness (wind, groups, superpositions) but *ak=0.44* criterion appear to hold (eg. Brown and Jenssen, JGR, 2001)
- steepness of individual waves can be related to the spectral densities

#### Dominant Breaking in Field Conditions



• There is still hope!



 measuring breaking onset in a field is a challenge

• if measured, limiting steepness, skewness and other features appear similar to those due to 2D modulational instability

Vladimir Dulov, MHI, Sebastopol Breaking onset, Black Sea, *kH~0.9* 

#### Conclusions

- Breaking onset caused by modulational instability was investigated by numerical and laboratory means
- Breaking probability can be predicted in terms of initial steepness
- Once waves reach a limiting steepness, they break. The final steepness limit reached by these waves is very close to the Stokes limit
- Wind forcing plays multiple roles, one of them is alteration of the modulation depth
- The modulation depth is connected with the breaking severity