Directional Wave Measurements: Answering the Question of Ground Truth

R.E. Jensen Coastal and Hydraulics Laboratory

Val Swail Environment Canada

W.A. O'Reilly Coastal Data Information Program

11th International Wave Hindcast and Forecast Workshop Halifax, Nova Scotia, Canada 18-23 October 2009

SCRIPPS Institution of

Oceanograph

Outline

- What is Ground Truth?
- Historical Perspectives
 - Deepwater
 - Shallow-water
- First-5 Approach
- Evaluation Procedure
 - Co-located
 - Wave system evaluation
- Summary

Historical Perspective

- NDBC Monopoly
 - Add to existing MET platforms
 - HIPPY sensors
 - Focus on deepwater
- USACE
 - CDIP co-sponsored
 - Coastal sites
 - FRF
 - PUV / S_{xy}
- Changes in 1990-2000's
 - NDBC:
 - Alternate sensors
 - New buoy configurations
 - CDIP: Datawell's
 - IOOS: Regional Associations
 - New to wave measurements

Why Seek Ground Truth ?

- Measurements of surface gravity waves are estimates
 - From accelerations (double integrated)
 - From pressure response (invert to free surface)
 - From x,y velocities (invert to free surface)
- Only direct measurement of waves:
 - From capacitance or resistance gauges
 - From photo analysis
- Signal to noise:
 - Contamination of wave records
 - Compliance for universal criteria
 - Reduces uncertainty in wave measurements
 - Provides consistency
 - Device to device
 - Underlying processes correctly evaluated

Seeking Ground Truth

The Basics: Estimating the Motion of a Sea Surface Particle

The Big 3

X, Y, Z

Pressure Sensors Accelerometers Tilt sensors Angular Rate Sensors Acoustic Sensors GPS

Seeking Ground Truth: Deepwater

• Buoy motion ~ Free surface response = Waves

"Directional wave information is derived from buoy motions, the power transfer functions and phase responses associated with the buoy, mooring, and measurement systems play crucial roles in deriving wave data from buoys."

This dependence is particularly important at low energy levels and at both short and long wave periods where the wave signal being measured is weak and potential for added signal contamination increases.

Deepwater: Buoys

- Impact is universal and dependent on buoy/device:
 - Non-directional buoys
 - 10% differences between US and Canadian NOMAD buoys compared to altimeter records?
 - Directional buoys
 - Indicated in higher order moments
 - Mean wave direction
 - Directional spread
 - Skewness
 - Kurtosis

Shallow water

- Shallow water:
 - Pressure sensors + PUV's
 - Acoustic profilers (ADCP/AWAC)
 - Probes
 - Buoys
- Water depth acts as high pass filter
 - Deeper deployment reduction in high frequency response
 - Shallower deployment adds to nonlinearities
 - Surf zone introduces uncertainty in the free surface

Need for Compliance

US Existing Measurement Site Evaluation

Table 1. Summar	y of Ex	kisting	Wav	ve O	bse	ervatio	on P	latfo	orms					
Region	12 m & 10 m Discus	6-m NOMAD	3-m Discus				Other Buoy Configurations				s	Shallow		
			Hippy	Angular Rate	Magnetometer	Strapped Down Accelerometer	2.0 m	1.8 m	1.7 m	1.1 m	Waverider	Pressure	Acoustic	200
Atlantic Coast Non-Directional	2	10(1)				7	11					3		1
Directional			2	6				5		2	4	1	7	
Gulf of Mexico Non-Directional													_	-
Directional	5			2	5		-	4			1		5	4
Non-Directional	2	4(1)				6						1		
Directional		·	5	8		3					21		1	1
Alaska Non-Directional	2	15(2)				2(3)								
Directional								3						4
Pacific Islands Non-Directional		3												-
Directional			2								4		1	4
Great Lakes Non-Directional						3(6)			(2)					
Directional			1	1	5						1	.	1	1
Caribbean Non-directional		6												1
Directional	2													1
Total	13	38(4)	9	17	10	21(9)	11	12	(2)	2	30	5	13	
Note: Number of Cana	dian site	s is given	in pa	arent	hese	es; these	e are	not ir	nclude	ed in	the to	tals		
					_					_				

We are seeking a uniform evaluation procedure

First-5 Basics

- First-5 Basics
 - Three components (x,y,z or derivatives)
 - Time series analysis
 - Results in S(f), a1(f), b1(f), a2(f), b2(f)

freq	Band	energy	Dmean	a1	b1	a2	b2
HZ	width	m*m/Hz	aeg				
0.0250	0.0050	0.0028	321	0.1920	-0.1567	-0.3925	-0.6345
0.0300	0.0050	0.0035	115	-0.1076	0.2259	-0.5132	-0.5796
0.0350	0.0050	0.0046	173	-0.2883	0.0348	-0.2973	-0.5084
0.0400	0.0050	0.0062	303	0.2602	-0.4085	-0.1606	-0.6449
0.0450	0.0050	0.0106	241	-0.0693	-0.1232	0.1890	-0.4245
0.0500	0.0050	0.0664	295	0.2434	-0.5111	-0.0182	-0.3324
0.0550	0.0050	0.4436	272	0.0230	-0.8426	-0.5614	-0.1069
0.0600	0.0050	2.4041	287	0.2594	-0.8467	-0.6409	-0.3178
0.0650	0.0050	1.0515	295	0.3385	-9.0967	0.5525	0.0727
0.0700	0.0050	5.2446	298	0.4468	-0.8304	-0.4730	-0.7269
0.0750	0.0050	1.9294	310	0.5515	-0.0000	-0.2944	-0.7309
0.0800	0.0050	1.4582	349	0.7292	-0.1430	0.2632	0.0403
0.0850	0.0050	2.5656	328	0.7689	-0.4840	0.2847	-0.6974
0.0900	0.0050	0.6455	352	0.7463	-0.1086	0.4258	-0.0207
0.0950	0.0050	0.6295	329	0.7213	-0.4297	0.2088	-0.6399
0.1013	0.0075	0.7499	0	0.6994	0.0019	0.2030	0.0206
0.1100	0.0100	0.5782	27	0.6616	0.3353	0.1029	0.4937
0.1200	0.0100	0.3596	23	0.7253	0.3028	0.2794	0.4324
0.1300	0.0100	0.1433	10	0.5246	0.0925	0.1332	-0.0804
0.1400	0.0100	0.0918	11	0.5567	0.1123	0.2326	0.1826
0.1500	0.0100	0.1041	17	0.6158	0.1886	0.2376	0.2832
0.1600	0.0100	0.0779	6	0.5846	0.0592	0.0527	0.2101
0.1700	0.0100	0.0458	11	0.4591	0.0926	-0.0412	0.1988

First-5 Basics

The Outcome and Minimum Requirements for Directional Observations

 $\frac{S(f,\theta)=S(f)[a1 \cdot \cos(\theta)+b1 \cdot \sin(\theta) + a2 \cdot \cos(2\theta) + b2 \cdot \sin(2\theta) + a3 \cdot \cos(3\theta)+b3 \cdot \sin(3\theta)+a4 \cdot \cos(4\theta)+b4 \cdot \sin(4\theta)+\dots \text{ infinity and beyond}]$

First-5 Basics

Data Users & Measurement Accuracy

Datawell Mark III as standard for analysis

This does not mean all directional wave measurements are required to be derived from Datawell Mark III buoys

Co-Located Procedure

- Period of record consistent
 - Time consistency between devices
 - Similar geographic/hydrographic
- Analysis based on First-5
 - NOTE: S(f) is 1st of 5

Analysis in the time domain by frequency criteria

Analysis in the frequency domain by moments

Analysis in the frequency domain by moments

Analysis in the frequency domain by moments

FIND STORM

- Wave System Approach
 - Wave components
 - Analysis: frequency ranges for specific events
 - Looking for clean swell wave events
 - Hurricanes
 - Southern hemisphere storms
 - Decaying N'Easters
 - Period of record similar

06/10

06/11

06/12

ANALYZE

0

06/08

06/09

COMPARE

HIPPY

3DM

NDBC 2D 44025

COMPARE

COMPARE

ARS

Summary

- There are a variety of wave measurement assets globally
 - Limited testing and evaluation performed to a baseline
 - Have limited performance metrics for directional measurements
- We need to test and evaluate based on one standard
 - Datawell Mark III Series
 - This does NOT mean all directional buoys need to be Datawell's

Summary

- Our goal is to evaluate based on First-5 principles
 - Endorsed by
 - NOAA-IOOS http://ioos.gov/program/wavesplan.html
 - USACE
 - AES: procured Datawell Directional Waveriders
 - JCOMM: PP-WET/DBCP
 - http://www.jcomm.info/index.php?option=com_content&task=view&id=62
 - OceanSITES: add directional wave measurements
 - NDBC: procured Datawell Directional Waveriders
 - Non-directional wave measurement evaluation included
 - Compliance for universal criteria
 - Reduces uncertainty in wave measurements
 - Provides consistency
 - Device to device
 - Underlying processes correctly evaluated

Questions ?

Bias in wave height measurements

