Extreme and unexpected waves

Johannes Gemmrich, Chris Garrett, Keith Thompson

University of Victoria Physics & Astronomy Victoria, BC, Canada **Dalhousie University**

Department of Oceanography, Department of Mathematics and Statistics Halifax, NS, Canada

- motivation
- unexpected waves
- rogue waves wave-current interaction
 conclusion

Gemmrich@uvic.ca cgarrett@uvic.ca Keith.Thompson@dal.ca

Project funding:

SAR NEW INITIATIVES FUND

National Search and Rescue Secretariat Secrétariat national recherche et sauvetage

Monsters of the deep

It came from nowhere, snapping giant ships into two....

New Scientist, June 30, 2001

Wave watching, Vancouver Island, BC

IIGiant wave hits beach, sending four to hospital
Middle Cove, Nfld.THE GLOBE AND MAIL
Sept. 2, 2008

... several dozen people were enjoying a bonfire on the beach when a giant wave came out of nowhere and rolled them over. People ran to higher ground and strangers helped keep each other from being carried out to sea.

• large wave was not anticipated

• potential of causing serious damage

Rogue wave occurrence

 $H_s = 4\sigma$: significant wave height σ : rms surface elevation

Wave height distribution: (linear theory, narrow-band frequency spectrum)

$$p(H) = \frac{H}{4\sigma^2} \exp\left[-\frac{H^2}{8\sigma^2}\right]$$

Rayleigh distribution

Exceedance probability: $P(H>2.2H_s) \approx 1/16800$

1 rogue wave every 1-2 days

Resonant non-linear interactions may generate more frequent rogue wave occurrence

Summary conclusions

- Unexpected waves
 exist
 - more frequent in water of intermediate depth
 - reasonable agreement with observations

- Extreme maximum wave heights
 - Strong regional effects
 - Rogue wave occurrence rates locked to tidal phase
 - Regional and temporal variability of sea state (H_s) important

Unexpected waves – data example

MEDS226, Cape Scott, BC, Canada

Unexpected waves – data example

MEDS226, Cape Scott, BC, Canada

Unexpected waves – data example, simulations

- linear, random superposition,
- 2nd order Stokes correction
- intermediate water depth correction

Gemmrich & Garrett: Unexpected Waves, JPO, 2008

Occurrence rate of *unexpected* waves (deep water):

about 1 in 14,000 (daily)

Unexpected waves - shallow water effect (simulations)

Higher occurrence rate of unexpected waves in shallow water

Observations

Surface elevation time series from wave buoys (MEDS):

- East Coast: 29 records
- West Coast: 24 records
- 20-minute blocks per hour (some 3h)
- longest records: 16,900 blocks
- (shortest record: 50 blocks)

- Extract unexpected waves from each record
- compare with simulations

Normalized unexpected wave occurrence R_{obs} / R_{sim}

reasonable agreement between observations and simulations

supports assumption of random wave superposition

Gemmrich & Garrett, 2009: Unexpected waves – Intermediate depth simulations and comparison with observations. Ocean Engineering, submitted

Extreme maximum wave height analysis

x: Locations of operational wave buoys (report hourly statistics only). C46xxx Black number: average number of $H_{max} \ge 2.2H_s$ occurrences / year (high sea states only)

→ Rogue waves more frequent on continental shelf

Note: buoy problems more likely to result in increased offshore rogue wave occurrence

Spectral content of wave and wind fluctuations

Spectral content of wave and wind fluctuations

inertial period

Significant wave height – tidal current

∆H_s : wave height fluctuations (12h median band-pass filter)

- u: E-W barotropic tidal current (positive towards E)
- v: N-S barotropic tidal current (positive towards N)

wave height fluctuations – current are in phase !

qualitatively consistent with quasi-homogeneous approximation (Tolman, JPO 1990) but much larger amplitude

Rogue waves – tidal current

Fraction of 1h-records containing a rogue wave Median height of rogue wave

 $\mathbf{u}_{||}$: tidal current component parallel to wind

rogue: $H_{max} \ge 2.2H_s$, $H_s \ge median(H_{s_{all}})$

- Increased rogue wave occurrence during strong currents
- Bigger rogue waves during strong currents

Regional wave fields

Rogue wave occurrences:

Strong spatial and temporal fluctuation of background wave field

→ Apparent high rogue wave occurrence may be due to non-stationarity of wave field

Conclusion

unexpected waves are expected

- simulations agree with observations
- unexpected waves are 5 15 times more frequent in intermediate depth (up to 5 events per day)

relevant to: recreational boating, visitors to beaches, instrument deployments

extreme waves are expected

- strong regional effects: More frequent on shelf
- wave height (H_s, H_{max}) modifications due to tidal currents are significant (>1.5m)
- surprisingly, wave and current are in phase (Dixon Entrance, C46145)
- rogue wave occurrence rates locked to tidal phase.
- regional variability of sea state (H_s) important

not every large wave is a rogue