Deutscher Wetterdienst

Maritime Weather Services, Hamburg

An event of "Parametric Rolling" onboard RV "Polarstern"

Thomas Bruns ¹ Susanne Lehner ² Xiao-Ming Li ² Katrin Hessner ³ Wolfgang Rosenthal ⁴

¹ DWD, Hamburg, Germany
 ² DLR, Oberpfaffenhofen, Germany
 ³ OceanWaveS, Lüneburg, Germany
 ⁴ GAUSS, Bremen, Germany

Motivation (1) "Parametric Rolling"

A serious problem for large container ships
 Is it possible to set up a warning system based on remote sensing and wave forecasts?

Motivation (2)

Project "PaRol" (GMES-DeMarine Security) GMES = Global Monitoring for Environment and Security

Application of Remote Sensing Technology for Ship Damage Prevention

lead by German Aerospace Center, Oberpfaffenhofen 4

GRUSS

LITIESYSTEM

- GAUSS mbH, Bremen
- OHB-System AG, Bremen
- Deutscher Wetterdienst, Hamburg
- Federal Waterways
 Engineering and Research Institute, Hamburg

Methodology

Installation of a "WaMoS" Wave Radar System onboard RV"Polarstern"

- Antarctic Expedition Oct 2008 May 2009
- > Wave Observations from Space
- "Parametric Rolling" occured by accident

Conclusions (1)

- RV,,Polarstern" experienced ,,Parametric Rolling" on March 7th, 2009
- A Cross Sea was observed by Wave Radar and from Satellite and forecast by Wave Models.
- Forecasting Rolling Events seems to be possible

Lateral Stability of a Ship

Eigenperiod of Rolling : $T_R = f B (GM_0)^{-1/2}$

Parametric Rolling

occurs due to

Periodic Loss and Gain of Lateral Stability

✓ Waves must be high enough to cause heavy pitching

- ✓ Wave length must be of the order of one to two ship lengths
- Period of Encounter = multiple of half the Rolling Period

$$T_E = (1 / T_p - V_s \cos(\mu) / L_p)^{-1} = n/2 T_R$$

Resonance Condition in a Heading Sea (µ=180, n=1)

> $T_{\rm R} = 17 \text{ s}$ $T_{\rm E} = 8.5 \text{ s}$

The ship must pitch twice for every roll

11th Int. Workshop on Wave Hindcasting & Forecasting, Halifax, Oct 18-23, 2009

Significant Wave Height Comparison between Wave Models, WaMoS and Visual Observations

Rolling Event on March 7th, 2009

11th Int. Workshop on Wave Hindcasting & Forecasting, Halifax, Oct 18-23, 2009

The Rolling Event

11th Int. Workshop on Wave Hindcasting & Forecasting, Halifax, Oct 18-23, 2009

Synoptic Situation on March 7th, 2009

Wind Field of DWD Global Wave Model on March 7th, 2009

06:00 UTC

18:00 UTC

Wind observed and forecast

DWD ECMWF Anemometer (reduced to 10m)

Waves observed and forecast

DWD ECMWF WaMoS VISUAL

Wave Field of DWD Global Wave Model on March 8, 2009 at 0:00 UTC

11th Int. Workshop on Wave Hindcasting & Forecasting, Halifax, Oct 18-23, 2009

"WaMoS" Wave Spectra

WaMoS 2-min-running mean data

Period of Encounter

11th Int. Workshop on Wave Hindcasting & Forecasting, Halifax, Oct 18-23, 2009

Conclusions (2)

- The Rolling Event was of the "parametric type"
- Parametric Rolling is predictable and avoidable by Monitoring
 - Sea Condition (Wave Radar + Model Forecasts)
 - Ship Motion (Sensors + Accelerators)
 - Resonance Condition (Intelligent Software)

