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Motivation

Motivation

o Freak waves hitting offshore platforms
e Possible loss of air-gap — wave-in-deck loads
o Video
@ Determine realistic environmental conditions that produce
largest crest elevations
@ Field measurements of freak waves indicate set-up in deep
water (e.g. Draupner new year wave)
o Investigate the role of sum- and difference-terms
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Methodology

Methodology

@ Spectral Surface Response (SRS) method
— probability of exceedence
@ Realistic sea states
e Nonlinearity
— Second-order irregular wave theory
e Bi-modal spectra
— Wind-sea: JONSWAP
— Swell: log-normal
o Directional spreading
— Wind-sea: bi-modal and frequency dependent
— Swell: Ewans (2001)
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@ A set-up is only predicted when:

e Directionality is included
e Steepest wind-seas interact with steepest swells
@ ’6563 - 95well| > 90°
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Spectral Surface Response Model (SRS)

@ Very efficient method (Tromans & Vanderschuren, 2004)
@ First Order Reliability Method (FORM)

o Constant value of ocean surface elevation as the limit
state

@ Surface elevation, 7, is a linear superposition of

e Linear random wave theory
o Second-order irregular wave theory (Sharma & Dean,
1981)

@ Provides the probability of a maximum above the value 7
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Irregular Wave Theory

wi - klx_wlt+¢l

K™ and K~ are kernels from Sharma & Dean (1981)
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Simulations
°

Simulations

o Investigate the effect of directionality

e Unidirectional simulations
e Directional simulations

@ Investigate the effect of water depth

e Deep, d = 2000m
e Shallow, d = 30m

@ 5 wind-sea spectra & 11 log-normal spectra
— 220 cases in total

@ Output: 1/Hs for a probability of exceedence of 0.001
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Simulations
°

Bi-modal Sea States

@ Wind-sea and swell components
G(f,0) = Gsea(f,0) + Gowen(f, )

where
Gsea(f7 9) = Ssea(f)Dsea(f7 0)

Gswell(f; 6) - stell(f)DswelI(f7 0)

@ Siea(f) is JONSWAP and Dg,(f,0) from Ewans (1998)
® Sowen(f) is log-normal and Dg,e(f, 6) from Ewans (2001)

8/17



Simulations
(1]

Wind-sea Spectra

@ 5 JONSWAP spectra

o Fetch relationship of Carter (1982) with constant
wind-speed of 20m/s

A5, T
| Spectrum | Fetch [km] | H [m] | T, [s] | Deep | Shallow
A 200 5.09 9.19 | 0.039 | 0.042
B 400 721 | 11.31 | 0.036 | 0.044
C 600 8.83 | 12.78 | 0.035 | 0.046
D 800 10.19 | 13.93 | 0.034 | 0.048
E 1000 11.40 | 14.89 | 0.033 | 0.049
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Simulations
oce

Wind-sea Spectra
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Simulations
.

Swell Spectra

@ Log-normal distribution
@ All 5 wind-sea spectra combined with swells with

e Constant H; = 3m
e 11 peak periods from within

Tp,sea —5< Tp,swell < Tp,sea +10
e Standard deviation of ¢ = 0.015Hz
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Unidirectional, Deep Water (d = 2000m)
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Directional, Deep Water (d = 2000m)

Second-orden / H Sum terms / Hs Difference terms / Hs
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Unidirectional, Shallow Water (d = 30m)

Second-orden / H Sum terms / Hs Difference terms / Hs
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Directional, Shallow Water (d = 30m)

Second-orden / HS

Sum terms / Hs

Difference terms / Hs
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Conclusions
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Conclusions

Steepest wind-seas and steepest swells — largest 7/ H;

In directional seas, largest n/Hs occurrs when
o Deep water: |0sea — Oswen| =~ 5°
o Shallow water: |0ses — Ospen| =~ 10°

@ In directional seas, smallest 17/Hs occurrs when

o Deep water: |0ses — Ospen| =~ 110°
o Shallow water: |0sea — Oswen| =~ 120°
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Conclusions
.

The End

Thank you for listening to my presentation
Are there any (further) questions?
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