Motivation	Methodology	Summary	SRS 00	Simulations 00000	Results 0000	Conclusions	References

Second-order Crest Statistics of Realistic Sea States

Marios Christou^a, Peter Tromans^b, Luc Vanderschuren^c & Kevin Ewans^a

^a Shell International Exploration and Production, The Netherlands ^b Ocean Wave Engineering Ltd, United Kingdom ^c Engineering Systems, Belgium

11th Waves Workshop, Halifax, Nova Scotia, Canada Monday 19th October 2009

Motivation	Methodology	Summary	SRS oo	Simulations 00000	Results 0000	Conclusions 00	References
Motiv	ation						

- Freak waves hitting offshore platforms
 - \bullet Possible loss of air-gap \rightarrow wave-in-deck loads
 - <u>Video</u>

Motivation	Methodology	Summary	SRS oo	Simulations 00000	Results 0000	Conclusions 00	References
Motiv	ation						

- Freak waves hitting offshore platforms
 - \bullet Possible loss of air-gap \rightarrow wave-in-deck loads
 - <u>Video</u>
- Determine realistic environmental conditions that produce largest crest elevations

Motivation	Methodology	Summary	SRS oo	Simulations 00000	Results 0000	Conclusions 00	References
Motiv	ation						

- Freak waves hitting offshore platforms
 - Possible loss of air-gap \rightarrow wave-in-deck loads
 - <u>Video</u>
- Determine realistic environmental conditions that produce largest crest elevations
- Field measurements of freak waves indicate set-up in deep water (e.g. Draupner new year wave)
 - Investigate the role of sum- and difference-terms

Motivation	Methodology	Summary	SRS 00	Simulations 00000	Results 0000	Conclusions	References
Metho	odology						

- Spectral Surface Response (SRS) method
 - \rightarrow probability of exceedence

Motivation	Methodology	Summary	SRS oo	Simulations 00000	Results 0000	Conclusions 00	References
Metho	odology						

- Spectral Surface Response (SRS) method
 - \rightarrow probability of exceedence
- Realistic sea states

Motivation	Methodology	Summary	SRS oo	Simulations 00000	Results 0000	Conclusions 00	References
Metho	odology						

- Spectral Surface Response (SRS) method
 - \rightarrow probability of exceedence
- Realistic sea states
 - Nonlinearity
 - \rightarrow Second-order irregular wave theory

Motivation	Methodology	Summary	SRS oo	Simulations 00000	Results 0000	Conclusions 00	References
Metho	odology						

- Spectral Surface Response (SRS) method
 - \rightarrow probability of exceedence
- Realistic sea states
 - Nonlinearity
 - \rightarrow Second-order irregular wave theory

- Bi-modal spectra
 - \rightarrow Wind-sea: JONSWAP
 - \rightarrow Swell: log-normal

Motivation	Methodology	Summary	SRS oo	Simulations 00000	Results 0000	Conclusions 00	References
Metho	odology						

- Spectral Surface Response (SRS) method
 - \rightarrow probability of exceedence
- Realistic sea states
 - Nonlinearity
 - \rightarrow Second-order irregular wave theory
 - Bi-modal spectra
 - \rightarrow Wind-sea: JONSWAP
 - \rightarrow Swell: log-normal
 - Directional spreading
 - \rightarrow Wind-sea: bi-modal and frequency dependent

3/17

 \rightarrow Swell: Ewans (2001)

• Steepest wind-seas and steepest swells ightarrow largest η/H_{s}

• Steepest wind-seas and steepest swells ightarrow largest η/H_{s}

- In directional seas, largest η/H_s occurrs when
 - Deep water: $| heta_{\textit{sea}} heta_{\textit{swell}}| pprox 5^\circ$
 - Shallow water: $| heta_{\it sea} heta_{\it swell}| pprox 10^\circ$

• Steepest wind-seas and steepest swells \rightarrow largest $\eta/\mathit{H_s}$

- In directional seas, largest η/H_s occurrs when
 - Deep water: $| heta_{\textit{sea}} heta_{\textit{swell}}| pprox 5^\circ$
 - Shallow water: $| heta_{\it sea} heta_{\it swell}| pprox 10^\circ$
- In directional seas, smallest η/H_s occurrs when
 - Deep water: $| heta_{\textit{sea}} heta_{\textit{swell}}| pprox 110^\circ$
 - Shallow water: $| heta_{\textit{sea}} heta_{\textit{swell}}| pprox 120^\circ$

Motivation Methodology Summary SRS Simulations Results Conclusions References oo

- Steepest wind-seas and steepest swells ightarrow largest η/H_{s}
- In directional seas, largest η/H_s occurrs when
 - Deep water: $| heta_{\textit{sea}} heta_{\textit{swell}}| pprox 5^\circ$
 - Shallow water: $| heta_{\it sea} heta_{\it swell}| pprox 10^\circ$
- In directional seas, smallest η/H_s occurrs when
 - Deep water: $| heta_{\textit{sea}} heta_{\textit{swell}}| pprox 110^\circ$
 - Shallow water: $| heta_{\it sea} heta_{\it swell}| pprox 120^\circ$
- A set-up is only predicted when:
 - Directionality is included
 - Steepest wind-seas interact with steepest swells

•
$$| heta_{sea} - heta_{swell}| > 90^\circ$$

Motivation Methodology Summary SRS Simulations Results Conclusions References

Summary of Conclusions

- Steepest wind-seas and steepest swells ightarrow largest η/H_{s}
- In directional seas, largest η/H_s occurrs when
 - Deep water: $| heta_{\textit{sea}} heta_{\textit{swell}}| pprox 5^\circ$
 - Shallow water: $| heta_{\it sea} heta_{\it swell}| pprox 10^\circ$
- In directional seas, smallest η/H_s occurrs when
 - Deep water: $| heta_{\textit{sea}} heta_{\textit{swell}}| pprox 110^\circ$
 - Shallow water: $| heta_{\it sea} heta_{\it swell}| pprox 120^\circ$
- A set-up is only predicted when:
 - Directionality is included
 - Steepest wind-seas interact with steepest swells
 - $|\theta_{sea} \theta_{swell}| > 90^{\circ}$
- Sum-terms dominate \rightarrow set-up has negligible effect on η

Spectral Surface Response Model (SRS)

Summarv

SRS

Methodology

Motivation

- Very efficient method (Tromans & Vanderschuren, 2004)
- First Order Reliability Method (FORM)
 - Constant value of ocean surface elevation as the limit state

Simulations

Results

Conclusions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

References

- Surface elevation, η , is a linear superposition of
 - Linear random wave theory
 - Second-order irregular wave theory (Sharma & Dean, 1981)
- $\bullet\,$ Provides the probability of a maximum above the value $\eta\,$

Motivation	Methodology	Summary	SRS ○●	Simulations 00000	Results 0000	Conclusions 00	References

Irregular Wave Theory

$$\eta^{(1)} = \sum_{i}^{N} a_{i} \cos(\psi_{i})$$

$$\eta^{(2)} = \frac{1}{4} \sum_{i}^{N} \sum_{j}^{N} a_{i} a_{j} K_{ij}^{+} \cos(\psi_{i} + \psi_{j})$$

$$+ \frac{1}{4} \sum_{i}^{N} \sum_{j}^{N} a_{i} a_{j} K_{ij}^{-} \cos(\psi_{i} - \psi_{j})$$

$$\psi_{i} = \mathbf{k}_{i} \mathbf{x} - \omega_{i} t + \phi_{i}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

6/17

 K^+ and K^- are kernels from Sharma & Dean (1981)

Motivation	Methodology	Summary	SRS oo	Simulations •••••	Results 0000	Conclusions	References
Simula	ations						

- Investigate the effect of directionality
 - Unidirectional simulations
 - Directional simulations
- Investigate the effect of water depth
 - Deep, d = 2000 m
 - Shallow, d = 30 m
- 5 wind-sea spectra & 11 log-normal spectra
 - \rightarrow 220 cases in total
- Output: η/H_s for a probability of exceedence of 0.001

• Wind-sea and swell components

$$G(f, \theta) = G_{sea}(f, \theta) + G_{swell}(f, \theta)$$

where

$$G_{sea}(f,\theta) = S_{sea}(f)D_{sea}(f,\theta)$$
$$G_{swell}(f,\theta) = S_{swell}(f)D_{swell}(f,\theta)$$

S_{sea}(f) is JONSWAP and D_{sea}(f, θ) from Ewans (1998)
S_{swell}(f) is log-normal and D_{swell}(f, θ) from Ewans (2001)

Motivation	Methodology	Summary	SRS oo	Simulations ○○●○○	Results 0000	Conclusions 00	References
Wind-	-sea Spe	ctra					

- 5 JONSWAP spectra
- $\bullet\,$ Fetch relationship of Carter (1982) with constant wind-speed of $20 {\rm m/s}$

				H_s/λ_p [-]		
Spectrum	Fetch [km]	H_s [m]	T_p [s]	Deep	Shallow	
А	200	5.09	9.19	0.039	0.042	
В	400	7.21	11.31	0.036	0.044	
С	600	8.83	12.78	0.035	0.046	
D	800	10.19	13.93	0.034	0.048	
E	1000	11.40	14.89	0.033	0.049	

Motivation	Methodology	Summary	SRS oo	Simulations ○○○●○	Results 0000	Conclusions	References
Wind-	-sea Spe	ctra					

- Log-normal distribution
- All 5 wind-sea spectra combined with swells with
 - Constant $H_s = 3m$
 - 11 peak periods from within
 - $T_{p,sea} 5 \leqslant T_{p,swell} \leqslant T_{p,sea} + 10$
 - Standard deviation of $\sigma = 0.015 \mathrm{Hz}$

Unidirectional, Deep Water (d = 2000 m)

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Directional, Deep Water (d = 2000 m)

∃ 990

Unidirectional, Shallow Water (d = 30m)

 $\mathcal{O} \land \mathcal{O}$

Directional, Shallow Water (d = 30m)

∃ 900

3 ⇒

Motivation	Methodology	Summary	SRS oo	Simulations 00000	Results 0000	Conclusions ●○	References
Concl	usions						

• Steepest wind-seas and steepest swells ightarrow largest η/H_s

Motivation	Methodology	Summary	SRS 00	Simulations 00000	Results 0000	Conclusions ●○	References
Concl	usions						

• Steepest wind-seas and steepest swells ightarrow largest η/H_s

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- In directional seas, largest η/H_s occurrs when
 - Deep water: $| heta_{\textit{sea}} heta_{\textit{swell}}| pprox 5^\circ$
 - Shallow water: $| heta_{\it sea} heta_{\it swell}| pprox 10^\circ$

Motivation	Methodology	Summary	SRS oo	Simulations 00000	Results 0000	Conclusions ●○	References
Conclu	usions						

• Steepest wind-seas and steepest swells ightarrow largest η/H_{s}

- In directional seas, largest η/H_s occurrs when
 - Deep water: $| heta_{\textit{sea}} heta_{\textit{swell}}| pprox 5^\circ$
 - Shallow water: $| heta_{\it sea} heta_{\it swell}| pprox 10^\circ$
- In directional seas, smallest η/H_s occurrs when
 - Deep water: $| heta_{\textit{sea}} heta_{\textit{swell}}| pprox 110^\circ$
 - Shallow water: $| heta_{\it sea} heta_{\it swell}| pprox 120^\circ$

Motivation	Methodology	Summary	SRS oo	Simulations 00000	Results 0000	Conclusions ●○	References
Concl	usions						

- Steepest wind-seas and steepest swells \rightarrow largest $\eta/{\it H_s}$
- In directional seas, largest η/H_s occurrs when
 - Deep water: $| heta_{\textit{sea}} heta_{\textit{swell}}| pprox 5^\circ$
 - Shallow water: $| heta_{\it sea} heta_{\it swell}| pprox 10^\circ$
- In directional seas, smallest η/H_s occurrs when
 - Deep water: $| heta_{\it sea} heta_{\it swell}| pprox 110^\circ$
 - Shallow water: $| heta_{\it sea} heta_{\it swell}| pprox 120^\circ$
- A set-up is only predicted when:
 - Directionality is included
 - Steepest wind-seas interact with steepest swells

•
$$| heta_{sea} - heta_{swell}| > 90^\circ$$

Motivation	Methodology	Summary	SRS oo	Simulations 00000	Results 0000	Conclusions ●○	References
Concl	usions						

- Steepest wind-seas and steepest swells \rightarrow largest $\eta/{\it H_s}$
- In directional seas, largest η/H_s occurrs when
 - Deep water: $| heta_{\textit{sea}} heta_{\textit{swell}}| pprox 5^\circ$
 - Shallow water: $| heta_{\it sea} heta_{\it swell}| pprox 10^\circ$
- In directional seas, smallest η/H_s occurrs when
 - Deep water: $| heta_{\it sea} heta_{\it swell}| pprox 110^\circ$
 - Shallow water: $| heta_{\it sea} heta_{\it swell}| pprox 120^\circ$
- A set-up is only predicted when:
 - Directionality is included
 - Steepest wind-seas interact with steepest swells
 - $|\theta_{sea} \theta_{swell}| > 90^{\circ}$
- Sum-terms dominate ightarrow set-up has negligible effect on η

Motivation	Methodology	Summary	SRS 00	Simulations 00000	Results 0000	Conclusions ○●	References
The E	nd						

Thank you for listening to my presentation Are there any (further) questions?

CARTER, D. 1982 Prediction of wave height and period for a constant wind velocity using the jonswap results. Ocean Engineering 9(1), 17 - 33.

Simulations

Results

Conclusions

・ロン ・四 と ・ ヨ と ・ ヨ ・

References

Motivation

Methodology

- EWANS, K. C. 1998 Observations of the directional spectrum of fetch-limited waves. *Journal of Physical Oceanography* 28 (3), 495–512.
- EWANS, K. C. 2001 Directional spreading in ocean swell. In *Proceedings of the 4th International Symposium Waves*.
- SHARMA, J. N. & DEAN, R. G. 1981 Second-order directional seas and associated wave forces. Society of Petroleum Engineering Journal 4, 129–140.
- TROMANS, P. & VANDERSCHUREN, L. 2004 A Spectral Response Surface method for calculating crest elevation statistics. *Journal of Offshore Mechanics and Arctic Engineering* **126**, 51–53.