
Motivation Methodology Summary SRS Simulations Results Conclusions References

Second-order Crest Statistics of

Realistic Sea States

Marios Christoua, Peter Tromansb, Luc Vanderschurenc

& Kevin Ewansa

a Shell International Exploration and Production, The Netherlands
b Ocean Wave Engineering Ltd, United Kingdom

c Engineering Systems, Belgium

11th Waves Workshop, Halifax, Nova Scotia, Canada
Monday 19th October 2009

1/17



Motivation Methodology Summary SRS Simulations Results Conclusions References

Motivation

Freak waves hitting offshore platforms

Possible loss of air-gap → wave-in-deck loads
Video

Determine realistic environmental conditions that produce
largest crest elevations

Field measurements of freak waves indicate set-up in deep
water (e.g. Draupner new year wave)

Investigate the role of sum- and difference-terms

2/17



Motivation Methodology Summary SRS Simulations Results Conclusions References

Motivation

Freak waves hitting offshore platforms

Possible loss of air-gap → wave-in-deck loads
Video

Determine realistic environmental conditions that produce
largest crest elevations

Field measurements of freak waves indicate set-up in deep
water (e.g. Draupner new year wave)

Investigate the role of sum- and difference-terms

2/17



Motivation Methodology Summary SRS Simulations Results Conclusions References

Motivation

Freak waves hitting offshore platforms

Possible loss of air-gap → wave-in-deck loads
Video

Determine realistic environmental conditions that produce
largest crest elevations

Field measurements of freak waves indicate set-up in deep
water (e.g. Draupner new year wave)

Investigate the role of sum- and difference-terms

2/17



Motivation Methodology Summary SRS Simulations Results Conclusions References

Methodology

Spectral Surface Response (SRS) method
→ probability of exceedence

Realistic sea states

Nonlinearity
→ Second-order irregular wave theory
Bi-modal spectra
→ Wind-sea: JONSWAP
→ Swell: log-normal
Directional spreading
→ Wind-sea: bi-modal and frequency dependent
→ Swell: Ewans (2001)
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Summary of Conclusions

Steepest wind-seas and steepest swells → largest η/Hs

In directional seas, largest η/Hs occurrs when

Deep water: |θsea − θswell | ≈ 5◦

Shallow water: |θsea − θswell | ≈ 10◦

In directional seas, smallest η/Hs occurrs when

Deep water: |θsea − θswell | ≈ 110◦

Shallow water: |θsea − θswell | ≈ 120◦

A set-up is only predicted when:

Directionality is included
Steepest wind-seas interact with steepest swells
|θsea − θswell | > 90◦

Sum-terms dominate → set-up has negligible effect on η
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Spectral Surface Response Model (SRS)

Very efficient method (Tromans & Vanderschuren, 2004)

First Order Reliability Method (FORM)

Constant value of ocean surface elevation as the limit
state

Surface elevation, η, is a linear superposition of

Linear random wave theory
Second-order irregular wave theory (Sharma & Dean,
1981)

Provides the probability of a maximum above the value η
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Irregular Wave Theory

η(1) =
N∑
i

ai cos (ψi)

η(2) =
1

4

N∑
i

N∑
j

aiajK
+
ij cos (ψi + ψj)

+
1

4

N∑
i

N∑
j

aiajK
−
ij cos (ψi − ψj)

ψi = kix− ωi t + φi

K+ and K− are kernels from Sharma & Dean (1981)

6/17



Motivation Methodology Summary SRS Simulations Results Conclusions References

Simulations

Investigate the effect of directionality

Unidirectional simulations
Directional simulations

Investigate the effect of water depth

Deep, d = 2000m
Shallow, d = 30m

5 wind-sea spectra & 11 log-normal spectra
→ 220 cases in total

Output: η/Hs for a probability of exceedence of 0.001
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Bi-modal Sea States

Wind-sea and swell components

G (f , θ) = Gsea(f , θ) + Gswell(f , θ)

where
Gsea(f , θ) = Ssea(f )Dsea(f , θ)

Gswell(f , θ) = Sswell(f )Dswell(f , θ)

Ssea(f ) is JONSWAP and Dsea(f , θ) from Ewans (1998)

Sswell(f ) is log-normal and Dswell(f , θ) from Ewans (2001)
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Wind-sea Spectra

5 JONSWAP spectra

Fetch relationship of Carter (1982) with constant
wind-speed of 20m/s

Hs/λp [-]
Spectrum Fetch [km] Hs [m] Tp [s] Deep Shallow

A 200 5.09 9.19 0.039 0.042
B 400 7.21 11.31 0.036 0.044
C 600 8.83 12.78 0.035 0.046
D 800 10.19 13.93 0.034 0.048
E 1000 11.40 14.89 0.033 0.049
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Wind-sea Spectra
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Swell Spectra

Log-normal distribution

All 5 wind-sea spectra combined with swells with

Constant Hs = 3m
11 peak periods from within
Tp,sea − 5 6 Tp,swell 6 Tp,sea + 10
Standard deviation of σ = 0.015Hz

11/17



Unidirectional, Deep Water (d = 2000m)
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Directional, Deep Water (d = 2000m)
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Unidirectional, Shallow Water (d = 30m)
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Directional, Shallow Water (d = 30m)
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Conclusions

Steepest wind-seas and steepest swells → largest η/Hs

In directional seas, largest η/Hs occurrs when

Deep water: |θsea − θswell | ≈ 5◦

Shallow water: |θsea − θswell | ≈ 10◦

In directional seas, smallest η/Hs occurrs when

Deep water: |θsea − θswell | ≈ 110◦

Shallow water: |θsea − θswell | ≈ 120◦

A set-up is only predicted when:

Directionality is included
Steepest wind-seas interact with steepest swells
|θsea − θswell | > 90◦

Sum-terms dominate → set-up has negligible effect on η
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The End

Thank you for listening to my presentation
Are there any (further) questions?

17/17



Motivation Methodology Summary SRS Simulations Results Conclusions References

Carter, D. 1982 Prediction of wave height and period for a
constant wind velocity using the jonswap results. Ocean
Engineering 9 (1), 17 – 33.

Ewans, K. C. 1998 Observations of the directional spectrum
of fetch-limited waves. Journal of Physical Oceanography
28 (3), 495–512.

Ewans, K. C. 2001 Directional spreading in ocean swell. In
Proceedings of the 4th International Symposium Waves.

Sharma, J. N. & Dean, R. G. 1981 Second-order
directional seas and associated wave forces. Society of
Petroleum Engineering Journal 4, 129–140.

Tromans, P. & Vanderschuren, L. 2004 A Spectral
Response Surface method for calculating crest elevation
statistics. Journal of Offshore Mechanics and Arctic
Engineering 126, 51–53.

17/17


	Motivation
	Methodology
	Summary of Conclusions
	Spectral Surface Response Model (SRS)
	Description
	Irregular Wave Theory

	Simulations
	Overview
	Bi-modal Sea States
	Wind-sea Spectra
	Swell Spectra

	Results
	Unidirectional, Deep Water
	Directional, Deep Water
	Unidirectional, Shallow Water
	Directional, Shallow Water

	Conclusions
	Conclusions
	The End

	References

