

100-year waves, teleconnections and climate variation

Paul H. Taylor Vicki Barker, David Bishop and Rodney Eatock Taylor

Department of Engineering Science

With thanks to BP – Dr. Colin Grant (and Statoil) for providing data

INTERESTING QUESTIONS

1. Is there an average wave climate at a particular location ?

- 2. Are the waves over the last 25 years a reliable guide to the next 25 or 100 years?
- 3. Is there a link between decadal variation in extreme waves and global scale geophysical 'teleconnections', the North Atlantic Oscillation and the Pacific/North American pattern ?
- 4. Can knowledge of NAO since 1820 (or the PNA since 1950 in the Pacific) be used to infer a longer history for extreme wave conditions ?

Long timescale decadal changes in North Atlantic over the past ~200 years and into the future?

North Atlantic - Norwegian data from BP measured from buoy at Haltenbanken Norwegian wave data

- significant wave height (H_s =4 σ) every hour from 1980-2002

Merged dataset: Haltenbanken buoy + gaps filled from hindcast

(meteorological data converted into wave heights computationally)

Second area of study : north Pacific - NOAA buoys with long records (>20 years) ANT: YT 46035 Canad Gulf of Sering AB Sea BC 46001 WA OR 46002 North Pacific Ocean

46006

Which location has most severe storms ?

460035 is close to the location of the rogue wave in series "The Deadliest Catch"

TELECONNECTIONS

Recurring and persistent, large-scale patterns of pressure and circulation anomalies that span vast geographical areas are known as '*teleconnections*'.

Many teleconnections are planetary scale, spanning oceans and continents.

Teleconnection patterns can reflect large scale changes in atmospheric wave and jet stream patterns and influence temperature, rainfall and storm tracks (<u>www.cpc.noaa.gov</u>).

"... the most important *teleconnections* in the Northern Hemisphere are the North Atlantic Oscillation (**NAO**) and the **PNA** (Pacific-North American) Patterns"

Hurrell et al, 2003

NORTH ATLANTIC OSCILLATION

+ ve phase

N. European winter – windy, mild and wet more storms + northerly track - ve phase

N. European winter – cold and dry fewer storms + more southerly

NAO defined as average pressure difference Gibraltar-Iceland in winter

Is this teleconnection visible in the Norwegian wave data ?

8

How to characterise storm-based wave severity ?

- use Peaks Over Threshold (POT) technique
- requires independent peaks : 1 number per storm
- what is a storm ?
- estimation of severity ?
- aim : robust estimate of 1 in 100-year extreme storm

- 1. Identify storms in Hs record (<24hours long, Hs>0.8 Hs-max)
- 2. Choose a single parameter to capture storm strength *and* duration Assume individual wave heights each hour are Rayleigh distributed
- 3. H_{mp} most probable maximum wave height for each storm
 - first introduced by Tromans and Vanderschuren 1995, OTC7683

Extreme value statistics- based on largest ~103 stormsRank storms in order, largest (labelled 1) to smallest (labelled N)Weibull fit to tail of exceedance plot of $(H_{mp} vs. Rank order)$

Norwegian buoy data

Comparison of 2 fitting forms – both examples of 'thin exponential-type tails' in extreme value theory

$$Log_{10} N = a + b H_{mp}^{c} - W2$$
$$= A + B H_{mp} + C H_{mp}^{2} - CW3$$

Results for extreme storm severity from buoy data

	H _{s-max}	H _{mp}		Ratio This ratio is important		
Point		100-yr	1000-yr	10 ⁻³ /10 ⁻² for long-term	reliability	
46001	13.88 <i>m</i>	26.7 <i>m</i>	30.0 <i>m</i>	1.124		
46002	13.50	28.2	32.1	1.138		
Haltenbanken	13.97	31.3	36.3	1.160		
46035	15.40	31.9	37.3	1.169		
46006	16.32	32.1	37.8	1.178		

100-year waves in open ocean winter storms are BIG !

Weibull fits seem robust

results consistent for north Pacific and offshore Norway

Storm severity ranking

 $46001 < 46002 < 46035 \sim 46006$

Perhaps most interesting difference is 46002 to 46006

 H_{mp-100} at 46006 = $H_{mp-1000}$ at 46002

Long-term variation of extreme wave height

- 1. POT works well but needs ~100 storms above (sensible) threshold. Perhaps ~20 significant storms each winter
- 2. Use 5-year data window, giving ~100 storms as required
- 3. Estimate 100-year extreme wave for 5-year data window, then slide window across entire data record
- 4. Estimate of long-term variation of extreme wave height

5-year sliding window estimate of 100-year storm severity for Haltenbanken buoy offshore Norway – varies *significantly*

5-year sliding window NAO-based prediction of long-term extreme wave climate

DESIGN wave height variation 25-33m has occurred over last 200 years and in the absence of climate change would presumably continue

What about variability in North Pacific ?

Teleconnections: at least 4 discussed in literature for North Pacific

Pacific / North American (PNA)

East-Pacific North-Pacific (EP/NP) El Nino Southern Oscillation (ENSO) Pacific Decadal Oscillation (PDO)

- atmospheric
- atmospheric
- sea surface temp
- sea surface temp

North Atlantic Oscillation (NAO)

- atmospheric

Arctic Oscillation (AO)

- atmospheric

Correlations coefficients (R²) between 100-year $H_{\rm mp\mathchar{-}100}$ and climate indices for north Pacific

Buoy	PNA	EP/NP	Nino3.4	PDO	NAO	
46001 46002	0.41 0.65	0.09 -0.31	0.10 -0.07	0.13 0.48	-0.49 -0.45	Virtually constant
46006	0.74	-0.25	-0.49	-0.15	-0.56	Variation > 15%
46035	0.48	-0.53	-0.64	-0.14	-0.49	

R²=0.83 for Haltenbanken CLIMATE OF NORTH PACIFIC IS MORE COMPLICATED THAN NORTH ATLANTIC - and the form of the various atmospheric pressure-based indices doesn't help

January anomalies of atmospheric pressure

- clearly these are linked

http://www.cpc.noaa.gov/

In conclusion :

- Is there an average wave climate at a particular location ?
 YES but the average must be over several decades

 there is a lot of decadal variability (in general)
- 2. Are the waves over the last 25 years a reliable guide to what may happen in the next 25 or 100 years ?
 MAYBE in North Atlantic 1960s-80s were unusually benign
- 3. Is there a link between decadal variation in extreme waves and global scale 'teleconnections', North Atlantic Oscillation and the Pacific/North American pattern ?
 YES – a very strong and simple link in North Atlantic but Pacific is more complex with several patterns playing roles
- 4. Can knowledge of NAO since 1820 (or the PNA since 1950) be used to infer longer term variation in extreme wave conditions ?
 YES – for North Atlantic, MAYBE – for North Pacific, but environment is constant or more complex

Pacific North American Oscillation (PNA)

- strong effects at some locations in north Pacific, negligible at others
- visible in wave data ?

Both NAO and PNA are atmospheric phenomena – unlike ENSO which is oceanic (SST-based)