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1 Introduction

The further development of operational wave—models requires a replacement of
the approximative methods for the calculation of the nonlinear wave-wave inter-
action by fast and accurate methods. Attempts have been made with extensions
of the well known discrete interaction approximation, [Hasselmann et al., 1985],
but they are so far not generally applicable since tuning for different classes of
wave spectra is required. The same problem occurs for methods based on dif-
fusion operators. For a comprehensive discussion see [Cavaleri et al., 2007].

This paper describes a neural net (NN) parametrisation of the mapping
between wave-spectra and the corresponding nonlinear wave-wave interaction.
The idea of applying neural networks in this context was first introduced by
[Krasnopolsky et al., 2001], [Krasnopolsky et al., 2002]. There the wave spec-
tra as well as the nonlinear interaction source terms are assumed to be separa-
ble functions of frequency and direction which are approximated by expansion
series, respectively. The neural network is used to map the two sets of ex-
pansion coefficients. This assumption was dropped in a successive work by
[Tolman et al., 2005] where the authors used two-dimensional Empirical Or-
thogonal Functions for the expansion of single peaked spectra.

In contrast to this approach, we demonstrated the feasibility of the di-
rect mapping of wave spectra onto the nonlinear interaction source term (see
[Wahle et al., 2009]). Additionally, no assumptions (such as separability or con-
vergence of an expansion series) about the wave spectra and nonlinear interac-
tion terms were made. Furthermore, our dataset utilises the complexity of wave
spectra in an operational wave model:

The choice of the training data was essential for the successful construction of
a NN, since a NN has good interpolation properties but produces unpredictable
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output when forced to extrapolate. We used simulated spectra from a hindcast
in the North-Atlantic for the one month period of January 1995 with the wave
model WAM cycle 4, [WAMDI group, 1988]. From this dataset of over five
million spectra, a representative subset containing spectra originating from wind
sea and swell and complex combinations of the two was selected. Figure 1 shows
some examples of highly complex spectra included in our training dataset.

We expected that the training for wave spectra representing multi—-modal
wave systems would be more difficult than for single peaked spectra. There-
fore the more complex cases should be well represented. To be able to en-
rich the number of multi-modal spectra in the training data set, we performed
an automatic classification of the wave spectra using the cluster algorithm by
[Schiller, 1980].
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Figure 1: Examples of complex wave spectra included in the dataset used for
the training of the neural networks.

The next step was to choose an appropriate structure for the NN. The spectra
were calculated on a frequency—direction grid of size (25x24). Thus, both spectra
and nonlinear interaction source terms were 600 dimensional. Still, the number
of independent parameters (or intrinsic dimensionality) was assumed to be much
smaller. In order to establish the necessary complexity of the NN it is important
to have an estimate of the intrinsic dimensionality of the spectra, i.e. the
minimum number of variables needed to represent the spectra. For this we
constructed auto-associative neural nets (AANN) which map the spectra onto
themselves while compressing them in between. The finding of the intrinsic
dimensionality led to the decision about the actual NN structure for the mapping
of the wave spectra onto the nonlinear interaction source terms.

In the following section 2 we will summarise the results of our feasibility
study: After a short introduction, the functioning of the auto-associative neural



net is illustrated in 2.1. The design and training of the actual neural network
for the nonlinear interaction source term is described in section 2.2. We then
summarise our results and discuss the relevant steps towards an operational
usage of the procedure in an outlook given in section 3.

2 Neural networks

Wave spectra and the nonlinear interaction source term are related via a six—
dimensional Boltzmann integral. A computational efficient method to param-
etrise this complex functional relation is the usage of NN’s. This is possible
since a NN with at least one hidden layer — a layer between the input and
the output layer — is able to approximate any continuous function (Universal
Approximation Theorem) as was shown by [Hornik, 1991].

So a NN — in this context — is a computational tool for function approxima-
tion. The NN maps the input vector (in our application the two—dimensional
wave spectra arranged as vectors with 600 components) nonlinearly onto the
output vector (the corresponding nonlinear interaction source terms).

The free parameters of the parametrisation are fixed during the so—called
training phase of the NN. The training is time consuming. But it needs to be
done only once, whereas the subsequent usage of a NN is very fast.

A more detailed introduction to NN’s is beyond the scope of this paper. For
a detailed description see e.g. [Bishop, 1995].

To train our NN’s we used the program developed by [Schiller, 2000)

2.1 Auto—associative neural network of wave—spectra

In order to achieve the goal of directly mapping the wave spectra onto the
corresponding nonlinear interaction source term, it is essential to find their
intrinsic dimensionality (the number of independent variables) to be able to fix
an appropriate NN structure.

Even if this step is not necessary, the training of auto-associative NN’s is
instructive and well suited to find the intrinsic dimensionality. An AANN is
a particular NN which maps the input vector onto itself. At one stage of the
mapping — in the so called bottleneck layer — the dimensionality is reduced.

We applied AANN’s with different degrees of reduction of dimension to the
600 components of the wave spectra. We found that an AANN with 39 bot-
tleneck neurons gave a good parametrisation for all different classes of wave
spectra contained in our dataset.

Figure 2 shows three examples of the performance of this AANN. The left
panel shows the original wave spectra. The middle panel shows the output of the
AANN — the mapping of the original wave spectra onto themselves. The right
panel shows the directionally integrated wave spectra. The examples exhibit
an increasing complexity of the wave spectra. The AANN output strongly
resembles the original wave spectra throughout the spectral space.
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Figure 2: Examples of the performance of the AANN: left panel shows original
wave spectra, panel in the middle shows corresponding AANN parametrisation,
and right panel shows the directionally integrated spectra.

2.2 Nonlinear wave—wave interaction

We then trained the neural network for the direct derivation of the nonlinear
interaction source (Sy1) terms from wave spectra.

To do so, the (exact) nonlinear interaction source terms corresponding to
each of the spectra had to be calculated first. The method first suggested by
[Webb, 1978] and known as the WRT method with further improvements by
[Van Vledder, 2006] was applied for this purpose.

The in— and output layer of the NN consists of 600 neurons as the discre-
tised wave spectra and the Syj—terms are interpreted as 600-dimensional vec-
tors. Firstly, the incoming wave spectrum is compressed to 39 dimensions, as
suggested by the AANN (see previous section). Subsequently, the nonlinear
interaction source term is derived.

Figure 3 shows results of the performance of the NN. The top row shows the
original wave spectra which served as input for the NN. The next row shows the
corresponding exact Sy—terms calculated with the WRT—method and below it
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Figure 3: Examples of the performance of the NN for emulating the WRT
method: upper row shows original wave spectra, next row the corresponding
exact Spy—term and third row shows its emulation by the NN. In the plots of
the Sy1—term the black areas correspond to most negative values and the white
areas to the biggest positive values. The gray areas in between cover ranges of
four orders of magnitude for the S;1—terms for either sign. The lower row shows
the directionally integrated S,;—terms.

the NN results (the WRT emulation by the NN) are shown. The bottom row
shows the directionally integrated Sy—terms. In all cases the NN emulation is
very similar to the exact solution. The directionally integrated plots highlight



the quality of the fit. The method is shown to be applicable, not only for single
swell systems, but also for the combination of swell and wind sea.

3 Outlook and Conclusions

The feasibility of a neural network based method for direct mapping of discrete
wave spectra onto the corresponding (exact) nonlinear wave—wave interaction
source (Sy1) terms has been demonstrated.

Additionally, we incorporated the complexity of wave spectra in an opera-
tional wave model. Still, the NN is able to emulate the WRT method calcu-
lations for single and multi mode wave spectra much faster and more accurate
then the approximations implemented in nowadays operational wave models.

However, the following improvements of the method are needed in order to
incorporating it into an operationally wave model:

The training of the NN’s should be repeated. We already started with ex-
tensive trials on different net architectures (e.g., different mapping,/ demapping
part). In particular, we assume it promising to train a AANN for both, the
wave spectra and the nonlinear interaction source terms and to map the both
bottleneck layers onto each other. Thus, more complex net architectures can
be tried out for the NN which maps the two bottleneck layers onto each other,
since the number of in— and output variables is one order of magnitude smaller
than in the present NN.

Finally, it has to be shown that this NN emulation gives robust and accu-
rate results when implemented in a numerical wave model. As suggested by
[Krasnopolsky et al., 2005], and [Krasnopolsky et al., 2007], parallel runs of the
wave model with the original parametrisation of the exact nonlinear interac-
tion and with its NN emulation should be performed to do so. Additionally,
some critical test cases, such as the evolution of wave spectra and the sup-
pression of instabilities, as shown by [Resio, 1991], and [Young, 1993] should be
evaluated thoroughly, in order to test the quality of the NN emulation. When
operationally running the wave model, a quality control block as suggested by
[Krasnopolsky et al., 2008] could determine whether the NN emulation will be
used or not.
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