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1 Introduction

In the presented talk we discuss some theoretical aspects of the physics of wind-driven
sea. On our opinion, some important questions of this theory are not clarified enough
and must be elucidated. This clarification is necessary to provide an adequate comparison
of the theory and the experiment, otherwise costly and laborious field and laboratory
measurements could not be properly interpreted and understood.

The first question is about the correct definition of wave action Ny (t), which obeys the

Hasselmann kinetic equation
dN

dt
augmented by the source and the dissipation terms. How to find the current action spec-
trum N (¢) from experimental data? What is measured in the best experiments, is the
space-time spectrum

= ©Onl +Sin+Sdi37 (11)

ka =< |77k:w|2 > . (1.2)

Here 1y, is the Fourier transform of the surface elevation. The most advanced definition
of wave action, used in many research papers (see, for example [1,2]), is the following:

2 00
0

Formula (1.3) is certainly correct for waves of very small amplitude in the limit g — 0,
where p is a characteristic average steepness of the surface. At a finite steepness, it can

1



be treated as the first term in expansion

Now Ny(k) is given by (1.3), while Ny(k) is the subject for determination. One can think
that this question is not very important because even for the most steep young waves
p? ~ 0.01, and the accuracy of (1.3) looks good. However, our preliminary estimates
show that the ratio Ny(k)/No(k) is a fast growing function on k, thus for spectral tails the
difference between N and Ny(k) might be essential.

Now we formulate the inverse problem. Suppose we know Nj. How to find Q.7

In the linear approximation, at u — 0, the answer is known:

Qrw = %(Nk dw—w)+ N ow+wy)). (1.5)

What happens if  is finite? In the neighborhood of w = wj, we should perform replacement

5( ) 1 '
w—wg) — —
g T (w—wg)?+T%

(1.6)

where @y, = wy, + pwyy + - -+ is renormalized frequency and T', ~ p? L) + - is effective
dissipation due to four-wave processes. As far as p? is small, one can think that both
shifting of wy and blurring of §-function are weak effects. However, the quotients wyy/wy
and T, Jwy, are growing functions on k, thus for k > k, (k, is the wave number of spectral
peak) derivation from simple formula (1.5) could be essential. There is one more important
effect. In the real sea all waves could be separated in two classes: ”resonant waves” with
w ~ wi and "slave harmonics” caused by quadratic nonlinearity of primitive dynamic
equations. The slave waves do not obey dispersion relations, as a result their frequency
spectrum for the given k is a broad function, not concentrated at w ~ wy.

Accurate determination of Ny(k) at given Q, and Q. at given N (k) is possible but
it is technically cumbersome problem. In Chapters 2, 3 we are taking first but important
steps to their solution. In Chapter 4 we study axial asymmetric solutions of equation

S = 0, (1.7)

that is known since 1966 ([3], see also [4, 5]). This equation has exactly two powerlike
solutions:

P\ 1
Ni(k) = ¢ (&) =R (1.8)
Q 1/2 1

Solution (1.8) is known as Zakharov-Filonenko spectrum [4]. Here P is the flux of energy
from small wave numbers and ) is the flux of wave action from high wave numbers.
Kolmogorov constants ¢, and ¢, were not known but now they are calculated:

¢, = 0219, ¢, =0.227. (1.10)



General isotropic solutions of Eq. (1.7) depend on two constants P and . In Chapter
5 we discuss the general anisotropic solution of this equation. We show that the solution
is defined by one arbitrary constant, the flux of wave action from high wave numbers, and
one arbitrary function on angle. In the axially symmetric case this function degenerates
to the constant P. The general anisotropic solution of (1.7) describes angular spreading
of spectrum growing with frequency. The last Chapter 6 is the most important from the
practical view-point. We discuss the balance equation in the universal domain w > w,,

Apparently in some domain on k-plane S;, + Sgs > 0. Suppose that S, = y(k) Ny. We
notice that S,; can be presented in the form

Snl :Fk—Fka, (112)

and the nonlinear wave interaction process is predominating if I'y, > ~,.. We show that
this condition is satisfied in majority of realistic cases, if the waves are not very young. It
means that, as we claimed before, the nonlinear wave interaction is the dominating process
in the wind-driven sea.

2 What is the wave action?

This is the widely used Hasselmann equation:

ON 0w ON

N K9 g, 2.1
or T ok or l (2.1)
Snl = 7I‘g2 / |Tkk1,k2k3|2 (S(/{? + k’l — kg — kg) 5(wk + Wy — Wiy — wkg) X

X (Ngy Ny Niy + NNy, Ny — N Ni, Ni, — N Ng, Ny, )dkydkodks. (2.2)

Here WE =1V g k tanh k‘H, H is depth, Tkk1k2k3 = Tklkkzkg = Tkgkg,kkl = Tkklkgkg are COUphIlg
coefficients, and

(k) = w(k) +29 [ Tyt N b 23

is renormalized frequency.
As it was mentioned before, the nonlinear interaction term S,,; can be presented in the

form
Spi = Fi, — T'y, Ny, (2.4)

where

Fy = 7g? / Tty iaka |2 0 (k- Fet — Koy — ki) 8 (wpo Wiy — Wiy —wig) Nioy Nioy Niy dlirdlindky (2.5)



and I'y, the dissipation rate due to the presence of four-wave processes, is the following:

Gk = 7T'g2 / |Tkk1,k2k3|2 (S(k‘ + k‘l - ]fg - ]{3) 5(wk + Why — Wiy — wk3) X (26)
X(NklNkQ + Nklng — N]QN]%) dkldl{igdkg (27)

One can say that in the real nonlinear sea the dispersion relation w = wy, is renormalized
and becomes a complex function

1

Eq. (2.1), (2.2) are written for the wave action spectrum N (7,¢). What is the exact
definition for the wave action? How Ng(r,t) can be expressed through the observable
measurable quantities? These are not that simple questions.

Making a snapshot of the surface from two points one can get its stereoscopic image

and restore the shape of elevation n(7). If we perform nonsymmetric Fourier transform
and define

Nk = ﬁ /n(f’) e~ " dr, (2.9)

we can introduce the spatial spectrum
Qr =< |ml* > . (2.10)

Making a seria of snapshots in consequent moments of time one can restore the full space-
time spectrum

Qro =< |Mho|® > . (2.11)
Apparently,
Qr = L Qrw dw. (2.12)

What is the wave action N7 In some articles and monographs we can find the following
definition:
_

Wk

N, (2.13)

This is just a widely spread carelessness. Spectrum () is an even function, Q_; = Qu,
while NV certainly does not obey this restriction. One can present the spatial spectrum in
the form w

k

where ny is the wave action. We deliberately denoted it by low-case letter, because nj and
Ny are different wave actions.

The wave field consists of "resonant” and ”slave” harmonics. The resonant harmonic
with wave vector k has a frequency close to the renormalized frequency @w;. The most
strong slave harmonics appear as a result of interaction of two resonant harmonics. Suppose

4



they have wave vectors El, Eg. In the first order of nonlinearity they generate four slave
harmonics with wave vectors pi, pa, —p1, —po and frequencies €21, s, —€21, —€25. Here p; =
lgl - /;2, Do = /;1 + ];2, and ) = w; — wq, 29 = wy + wy. There is no any definite relation
between the wave vector and the frequency for slave harmonics.

Returning to the wave action, let us explain now the difference between n; and Ny.
N}, is the "refined” wave action that includes resonant harmonics and slave harmonics of
higher order only and ny is the "total” wave action that includes both resonant and all slave
harmonics. Apparently, n, > N, and is directly connected with experimentally measurable
spatial spectrum by relation (2.14). But ny does not obey the Hasselmann equation. On
the contrary, the "purified” wave action Ny in principle cannot be measured in any kind
of experiment. But exactly this sort of wave action satisfies the Hasselmann equation. As
a result, all operational models solve the Hasselmann equation augmented with additional
terms: S;,, the input from wind, and Sy, the dissipation due to wave breaking. Hence
the operational models do predict N,. At the same time, experimentalists can measure
the ny only.

On the first glance we see serious discrepancy, however nobody pays any attention.
Why this happens?

To give an answer we should estimate the relative difference between n, and Ny. Let
us denote

ng — Ng

a(k) = (2.15)

ng
In a typical observed spectrum of wind-driven sea we should separate spectral area near
to the peak frequency w ~ w, and the tail w > w,. In the energy capacitive spectral band
close to w,, a is small:
o~ 2.
The characteristic steepness pu is defined as

o?,

SEGS

T

2,E

where o is the total energy of waves. Even for young waves p? < 0.01, thus the relative
difference between n and N for deep water is not more than one percent and can easily
be neglected. However, a(k) is a fast growing function on k. An accurate estimate of
dependance a on frequency at w > w, is not a subject for current research. The article
on this topic will be presented for publication soon, however our preliminary results show
that this dependance is very fast growing:

3
a ol <i> . (2.16)
Wp
As it was mentioned above, in the area w ~ w, one can neglect the difference between
ng and Ng. In this area we can replace Eq. (2.10) by

Qk

Wi

5 (N + V). (2.17)



There is essential difference between (2.14) and (2.17). Because ny > 0 at any k, wave
vectors of slave harmonics cover all k-plane, thus determination of ny from ) is impossible
in principle. On the contrary, in many practical cases Ny is nonzero only inside the
bounded domain G on the k-plane. At the same time N_j, 7 0 inside the domain G only,
which is radially symmetric to G. In other words, if vector k belongs to G, vector —k
belongs to G. Suppose that G and G have no intersection. In this case in the domain
G we have Ny = 2Q/wg. In spite of presence of factor 2 in (2.14) the integral identity
J Qi dk = [ wy Ny dk is the same as we would have used the naive and blatantly incorrect
formula (2.13).

In some important cases domains G and G have intersection. In this case we face
ambiguity in determination of Ny from (2.17). To overcome this ambiguity one should use
the space-time spectrum @, and define

2 00
ng = — Qk,w) dw. (2.18)
Wg J0
The equivalent formula is presented in the monograph of Monin and Krasitsky [1] printed
in Russia in 1985. It was also used by Rosental et al [2] approximately in the same time.
In this case again

/wk n die = /_OO Q(k, w) dwdk. (2.19)

Let us notice that formulae (2.14), (2.18) account slave harmonics and can be used with
comparison of spectral tails obtained from the experiment and from solution of Hasselmann
equation, both numerical and analytical, with caution. They work up to accuracy of ;2 in
the neighborhood of spectral peak, but can lead to essential errors in area of spectral tails.
Preliminary estimate for accuracy of expression (2.18) will be done in the next Chapter.

3 How to separate resonant and slave harmonics?

To make the accurate separation of resonant and slave harmonics and to find an explicit
formula that connects Q(k,w) and Ny, one should use Hamiltonian formalism and imple-
ment the canonical transformation, excluding cubic terms in the Hamiltonian. This is a
cumbersome mathematical procedure. In this Chapter we will demonstrate how it could
be done in the most economic way.

We study the weakly nonlinear waves on the surface of an ideal fluid of infinite depth
in an infinite basin. The vertical coordinate is

—-H < Z<77(7°,t), r= ($7y)7 (31)
the fluid is incompressible, H is the depth of fluid,

divV =0, (3.2)



and velocity V' is a potential field

V=Vao, (3.3)
where potential ¢ satisfies the Laplace equation
Ad=0 (3.4)
under boundary conditions
Oloey = U(r,t),  Pilim—oe =0 (3.5)
The total energy of the fluid, H =T + U, has the following terms:
T — %/dF/UM(VCD)de:%/\D@ndS, (3.6)
U = % g/7]2 dr. (3.7)

The Dirichlet-Neumann boundary problem (3.4), (3.5) is uniquely resolved; thus the
flow is defined by fixation of 1 and W. This pair of variables is canonical; thus evolution
equations for n, ¥ take the form [6]:

on _6H oV §H

— = — —=—— 3.8
ot ov’ ot on (38)
After non-symmetric Fourier transform,
. 1 .
W(r) = / U(k) e dk,  W(k) = ChT / U(r) e dr, (3.9)
equation (3.8) reads: ) )
H ov 0H
On _off 0% off (3.10)
ot oV ot oy,
~ 1
H=—H=Hy+H +Hy+--- (3.11)
472

In [7-9] was shown that Hamiltonian H can be expanded in Taylor series in powers of knp:
Hy = %/{Akmy? +g ]nk\z}dk, Ay, = ktankH
Hy = % / L (Fer, ko) W, Wiy (K + ko + keg) dky dley dy (3.12)
Hy = % /L(2)(7€1, ko, ks ka) Wy Wy Mg My O (K1 + K2 + kg + k) dkydRoni e,

Here

LY (ky, ko) = —(ky, ko) — Ag, Ap, (3.13)
1 1
L (ky, by, kg, ky) = 3 (kiAs + k3 Ay) + ZAlAQ(Al-i-B + Aops + Ajya + Asys)
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Now we can introduce normal variables ay:

U, = % (A%)M (ar — a*,) (3.14)

Normal variables obey the following Hamiltonian equations:

aak 5H
— +1 =0 3.15
ot —H(Sa’,; (3.15)
All terms in the expansion of Hamiltonian (3.11) must be expressed in terms of ay:
Ho = /wk|ak|2dk‘
1
H = / VD (aral, b, + abag )0 (k — Ky — ky)dkdkydks +
1
+ oz / V0D (aparar, + aial, al, )k + ky + ko) dkdkydky (3.16)
1/4 A 1/4 A 1/4 A 1/4
12 9 k (1) k1 (1) k2 (1)
% = LY (ky, ko) — LY (=k, k) — LY (=k, k
kki1ko 2\/§ { (AklAk2> ( 1 2) (AkAk2> ( 1) (AkAk1> ( 2)
(3.17)
1/4 A 1/4 A 1/4 A 1/4
y08) _ 9 k LO(ky ko) + (=22 ) L0V k) + (=222 ) LO(k, &
kkikso 2\/5 AklAk2 ( 1 2) AkAkg ( 1) AkAkl ( 2)
(3.18)
Now we can define the "total” or rough action:
npd(k — k) =g <apa; >. (3.19)

It is clear that fundamental relation (2.14) is satisfied. Then, we perform the Fourier
transform in time

1 )
o = 5 /a(k’,t)e_’”tdt (3.20)
and introduce
Mg 6 (k — k') 0(w — ') = g < arwags 0 > . (3.21)

The space-time spectrum of elevation is simply

W,
Qk,w = ?k(nk,w + n—k,—w) (322)

To separate resonant and slave harmonics we must perform a canonical transformation to
new variables, excluding cubic terms in the Hamiltonian. This is a standard procedure
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known in celestial dynamics down to nineteenth century. However in our case this proce-
dure is rather cumbersome. It was first done by Krasitski [9]. He found transformation of
initial canonical variables aj to new canonical variables b, which contain first order slave
harmonics only. Variables a; are presented by infinite series in new variables by:

ap = be +a +al? + o). (3.23)
He calculated first two terms in this expansion and found the following expressions:
oV = /F(l)(E K1, Ko) b, by 00K — R — Fo) dky dky

. 2/r<1 (o, I, E)bzlbkzé(ﬁ+51—52)dkldk2

- /B(E’ ﬁl b, E)bk biy by 0(k + Ky — iy — ki) dky dko dbes + -+ (3.24)
where
oo U2(L T T
TO(E, &y, ko) = 1 VO Ry k)
2 (wk — Wy, — wk2)
T 1 VO Ty )
r® k, ki, k _ = Jk1, ko -
( 1 2) 2 (wk + wi, + wk2) ( )
and
B(k, ky, ko, ks) = (3.26)
DOy Ko, Fy = ) D (ko By — ) + TRy R Ty — K) DO (o, B By — F)
_F(l)(E, E%E—E )F (k3,k1,]€3—k1) ra )<k1,]{73,]{;1 Eg)]f‘l (E27E17E2_E1>
_F(1)<E+El’g’]€ )F (k2+k3’k2’k5)+r ( k klak kl) F(Z ( EZ_E37E27E3)

On our opinion, Krasitski used a rather long way for calculation of terms in expansion
(3.23). He directly checked the validity of canonicity condition

dap Oay day Oay 7
N _ dk" =0
{ar, ap'} / {5bk~ obi, 0L 5bk”}

—_— dap daj,  day daj 0 ,
law,ay} = / {5bk,, 5t 0t b | K = Ok =K (3:27)

Calculation of a,(fs) by this method is just impossibly complicated task. The canonical
transformation can be found using more sophisticated methods. The first one was offered
in the article [7] in 1998. Let us consider that ay is a solution of Hamiltonian system

Oay | ;O
or daj,

=0 (3.28)
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where 7 is "artificial time” and R is an efficient Hamiltonian
R = i / T (ahara, — axal,al,) 6(k — ky — ky) dkdkydky +
?: Xk *
+3 / T (ala;, af, — aparax,) 6(k + ky + ky) dkdkydky (3.29)
Eq. (3.28, 3.29) must be augmented with initial condition

ag|r—0 = bg. (3.30)

The needed canonical transformation is obtained if we put 7 = 1. Expanding the solution
in Taylor series of 7 and putting 7 = 1 at the end, we reproduce the result of Krasitski
(3.24 - 3.26) in a much more economical way.

Now we demonstrate another, more traditional way for constructing of canonical trans-
formation, which is based on finding of generating function. We present a;, in the form

1
a = —— —|—Z 5 _ = *7 _ = *
k \/5(% Pr), G-k dr; P—k = Dg

Functions ¢, pr obey equations
Oqr,. ~ 0H  Opy 0H

— = — 3.31
ot opr Ot 8q; (3:31)
where H is the same Hamiltonian expressed through qx, pr. Now
1
Ho = 5 [nllanl® + pef?)dk (3.32)
1
H, = ) /ka1k2 Ak Phy Pry O (K + ko1 + ko) dkdky dk, (3.33)
1/4 p1/4
9 k(D)
Lik—ky = =377 173 Lhiko (3.34)
Ak/—l Aké

We will perform transformation to new variables Ry, &, using the following generation
function (see also [10]):

1
S = / Foar dk + / Aorks G Qs Ry 60k + K + ko) diedky dkes +

1
+3 / Buur, R Ru, Ri, 8(k + k1 + ko) dkdkydks (3.35)
The ”old momentum” p, and "new coordinates” & are expressed as follow
08
PG = Rt [ At s R 80k = by = Kol b (3.36)
05 1 «
G = =7 = Gt 5 [ Akt Qe Gy O — Ry — K5) dhrdb +
OR_j 2

[ Bt e Bio a0k = b — ke = 2) dkdb (3.37)
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Apparently Big,k, is symmetric with respect to all permutations and Agg,k, = Akkoky -
To find A, B we notice that in the first approximation

1
@ = &= [ bk G G 0k — ki — k) dhadk; -

- / B_ioisns Ri Ry 00k — ko — ko) dkydiy (3.38)

and in (3.36) we can replace g, — &. Now we plug g, pr to (3.32). In (3.33) we can
just replace ¢, — & and pr — Rj. From the condition of eliminating cubic terms that
are proportional to &€k, &k, and Egxpr, Pk,, and the symmetry conditions we find after some
calculations the following nice and elegant expressions for A, B:

1 /Lo+Ly+Ly Ly+L;— Lo 1 /Lo—Ly—Ly Li—Ly— Ly
Atyky = — + + - +
4 \wyg+wi +wy  wot+w —ws 4 \wy— w1 — wy wl—wo—wg( )
3.39
1 /Lo+Li+Ly Ly—Li— Lo 1 /Ly —Lo—Ly Lo—Lo— 14
R e == R =t
4 \wy+ wyp + wo Wy — W1 — Wy 4 \w) —wy — wy Wo — Wy — W1
(3.40)
Here
Lo = Likyky, L1 = Liykkyy, Lo = Liypr,
Wo = Wi, W1 = W, Wy = Wk, (3.41)

To reproduce the results of Krasitski one has to expand old variables gy, pr in powers of
new variables &, Ry, then b, as follow

@

New normal variables by, satisfy Zakharov’s equation [6]

0b . i "
8_: + iwy by + 5 /Tkzk1k2k3 bry Dky Uiy Okt ky —ky— ey A1 dRadks = 0 (3.43)

Here Tyx, kyks is the same as in (2.2). An explicit expression for Ty, k,ks 1S too complicated
to be presented here. Notice that now we can calculate ny = |ax|? by use of expansion
(3.23). We will assume that triple correlations of new variables are zero

< bkbklka >= 0, < b;bklbkg >=0 (344)
We use also the Gaussian closure for quartic variables

< bzbzlbkzbk;; >= N, Nk1 (5k—k2 5k1—k3 + 5k—k3 5k1—k2) (345)
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Here Nj, is the 7refined” action. After some calculations we find that n, and N, are
connected by the following relation (it can be found in [8]):

VO (E, by, k P T
. | 1 ka)|? (N, Niy — NuNi, — NpNi ) 8(F — Ky — ko) dkydks +
T2 (= — o)

|V (12)( k, kl,k2)|2
2/ (Wi, — Wk — Wy )?
|V (1:2)( kQ,k /{:1)|2
2/ (Why — Wk — Wk, )?

/|V03) k’ kl,k2)|2
2 wk+wk1+wk2)

(N, Niy + NiNi, — NNy, 0(ky — k — k) dkydks +

(Ni, Ny, + NpNyy, — NioNg, ) (ko — k — k) dkydks +

(N, Niy + NNy, + NpNi,) 6(k + ky 4 ko) dkidky  (3.46)

The difference between n; and Ny,

Ay = M
N,
is essential on shallow water. However, even on deep water A, is a fast growing function
on k.
The relation between space-time spectra of ”"total” ny,, and ”purified” Ny, versions of
wave action is not known so far. This is a subject for future research. However, N, can
be presented in the form

Ny = — - 3.47
T (w— R+ 172 (3:47)
and we can put approximately
1 1 'y N I, N_;
w — 5 Nw N_ —w) = 5 _ = = 3.48
@k ka( ko + N_k—w) 2#{(w—wk)2+1“i (w—wk)2+l“%} (3.48)
After integration by w and assuming that arctan 'y /wy ~ T'y/wy, one gets the following
relation
00 1 (N,T N_,T_
N, :/ N(k,w)dw+—< L ’“) (3.49)
0 ™ Wi W_f
From (3.48) we see that identity
N, = / N(k,w) dw (3.50)
0

is valid up to the relative accuracy I'y/wg. The value of this accuracy will be discussed
in Chapter 6. Near the spectral peak it is of order 47pu?. Identity (2.18) is satisfied with
much less accuracy. Even near the spectral peak the accuracy is of order ;2 and it becomes
worse at k > k,. An explicit expression for Q(k,w) through N, will be the subject of a
separate article.
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4 Stationary solutions of kinetic equation: Isotropic
case

In this chapter we address the following question: How to solve the stationery kinetic
equation

Su=07? (4.1)
Formally speaking, this equation has thermodynamically equilibrium solutions
T
Ny = , (4.2)
Wr + W

where temperature 7" and p are constants. It might sound like paradox, but in fact spec-
trum (4.2) in not a real solution of equation (4.1). Since this moment we discuss only the
case of deep water and consider w = y/gk. Also we denote that k = |E |.

To justify this statement we notice that in two particular cases, py =0 and T = cu, u —
00, solution (4.2) takes form

A

WE \/§
N=c (4.3)

Both these solutions are isotropic powerlike functions
Ny, =k7" (4.4)

with particular values = 1/2, 0. Let us study the general powerlike solution of (4.1).
By plugging (4.4) into (4.1) we find that each particular term in S,; is diverging, but in
different terms the divergence can be cancelled, thus there is a ”window of opportunity”
for the exponent x. As a result,

S = g*P k32 B(g), (4.5)

Here F(z) is a dimensionless function, defined inside interval z; < x < 5. The edges
of the window, x; and x5, are the subject for determination. Outside the ”window of
opportunity”, at < z; and x > xo, F(x) = co. Thus all admitted values of  must be
posed between x; and x».

Let the quadruplet of waves be formed of wave vectors satisfying resonant conditions

ky + Ky = ks + Ky
Wiy + Why = Wkg + Wiy (46)

Suppose that |k1| < |k|. The three-wave resonant condition,

—

/; = 122 + kg, Wi = Wk, -+ Wiy s (47)
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can not be satisfied, thus one of vectors ky, k3 must be small. If |ks| < |ks|, then

—

ky = k+k — ks,
1(k, Kk — k
wiky) = @(1+§7<’ }{2 3)+~~> (4.8)

In the first approximation by small parameter |k;|/|k| one can put w(ky) = w(k), w(k,) =

w(ks) and |ks| ~ |ki|. In other words, vectors ki, k3 are small and have approximately the
same length k. If vector k is directed along axis x, the coupling coefficient Tkk1 koks depends
on four parameters k, k1, 60,,03. Here 6,03 are angles between kl, k’g and k. Remembering
that k; < k, we calculate the coupling coefficient in this asymptotic domain. A tedious
calculation presented in [11] leads to the following compact result:

1
Tikykoks = §k ki To, 6,
To, 0, = 2(cosby+ cosbs) —sin(f; — ) (sinh; — sin ;). (4.9)
On the diagonal k3 = ki, 3 = 0; we get a very simple expression published in 2003 [29]:
Ter, =~ 2k%k cos 6. (4.10)

Suppose that spectrum is separated to the low-frequency component Ny(k) and the high-
frequency component N;(k). We assume that N; < N, and take into account the interac-
tion between Ny and N; only. One can see that N; satisfies the linear diffusion equation

0 0 0

— Ny = — Dy k* — Ny, 4.11
ot Ok T ok, (4.11)
where D;; is the tensor of diffusion coefficients,
00 2 2
D,; = 2mg¥? / dg " / do, / d0s|T (61, 05)[2 pip; N (0, 0)N (63, @) (4.12)
0 0 0

p1 = costy — coslls, po =sinfy —sinfbs
If spectrum is isotropic and does not depend on angle 6, we get the further simplification:

5 00
= Dd;; D=>-7 g3/2/0 q\7? N?*(q)dq. (4.13)

D; 179 ]

ij
The diffusion coefficient D diverges at k — 0, if x > 19/4. Thus x5 = 19/4.
Let us find behavior of function F(z) near x = x. In the isotopic case equation (3.9)

reads
ON; B D od 50

otk ok 6k (4.14)
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If £ — 19/4, we get the following estimate:

Flo) 19 11 57 1 126.4
T)=—+— — o~
44 16 19/4—x  19/4—a

(4.15)

To find x1, the lower end of the window, we should study the influence of short waves to
the long ones. Let us suppose that |k, |ka| > k. In the first approximation |k3| = |k|, and

the resonant interaction S,; can be separated into two groups of terms: S,; = Sfj) + Sg).

For S,(j) the integrand includes product Ni, Ni,. If we put k; = ko, we get the following
expression for the low-frequency tail of spectrum:

Sy(j) = 27Tg2/ ’Tkkl,kl,k3|2 5(&) — wks) (ng — Nk) lel dkl (416)
Notice, if |ki| > |k|, then |Tir, 1y 4s)° = ki, and integrand in (4.16) is proportional to
kI Ni,. If © < 2, the integral diverges.

The group of terms linear with respect to the high-frequency tail of spectrum is more
complicated:

S = 2mg’ Nk/ | Tk eaka|* Ny (Niey — N,) %
X 5(wk + W, — W, — wkg) 5(]6 + ]{?1 — kQ — kg) dk?l dkg dk’g (417)

We can perform expansion

ON
Ny, — Ny, = p; ok’ pi = (k — k3);. (4.18)

In the general anisotropic case the integrand is proportional to k%(pV Ny,) and the diver-
gence occurs if x = x; = 3. However, in the isotropic case this term, the most divergent
one, is cancelled after integration by angles. In this case we should study quadratic terms
in expansion of the integrand in powers of parameter (P, k;)/k?. The most aggressive
term appears from the expansion of J-function on frequencies 6(wg, — Wiy +p + Wi — Wy )-
Performing integration by angles we end up with equation

ON;, ON
— = qk" Ny = 4.19
q = §7T3 g3/2E _ %7_‘_3 g3/2 /OO k3/2 Nk dk.
16 8 0

Here E is the total energy. Thus in the isotropic case 7 = 5/2 and we get for function
F(z) the following estimate:

525 4 1 241.86
F=——mn = .
28 5/2—x b5/2—=x

(4.20)
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Figure 1: (a) Plot of function F(x). (b) Plot of function F(z): zoom in the vertical
direction

On Figure 1a is presented the plot of function F'(z) for isotropic case that we calculated
numerically. One can see that in the interval x; < x < x5 function F(z) has exactly two
zeros at
23
5
To prove this result, let us consider that spectra are isotropic and present conservation
laws of energy and wave action in the differential form:

r=y1 =4, =1y = (4.21)

oI, ON, 0P

5 2 kwy, g o (4.22)
k

P=2n / ke Sy d, (4.23)
0

ON, 90

21k 5 9% (4.24)
k

Q= 2r / ke Sy dk. (4.25)
0

Here P is the flux of energy directed to high wave numbers, while () is the flux of wave
action directed to small wave numbers. Equations

P = Py =const, Q= Qo= const (4.26)

apparently are solutions of stationary equation S,; = 0. We will look for the solution in
the powerlike form N = A k~%; then equations (4.23), (4.25) read

F(x
PO = 271'92 Agﬁ k73(174) (427)
F(x) o
— _org3/2 )3 L —3(z—26/3) 4.2
@ T 3z — 26/3) (4.28)
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One can see that Py and @ are finite only if F(4) = 0 and F(26/3) = 0, moreover,
if F'(4) > 0 and F'(26/3) < 0. We conclude that equation S,; = 0 has the following

solutions:
1/3
(1) PO 1
NO - o (D)L 4.29
k Cp <92> k47 ( )
1/3
2 Qo 1

Here ¢, ¢, are dimensionless Kolmogorov constants

3 1/3 3 1/3
= (27rF’(4)> G (27ryF'(23/6)|> '

On Figure 1b is presented the zoom of function F(z) in vertical coordinate. The
numerics gives F’'(4) = 45.2 and F"(23/6) = —40.4. In the area of zeros F'(z) can be
approximated by parabola,

F(z) ~ 256.8(x — 23/6)(x — 4). (4.31)
Let us notice that
F(9/2) =85.6 (4.32)
thus we get
cp, = 0.219, ¢, = 0.227, (4.33)

and see that the both Kolmogorov constants are numerically small.
In the isotropic case, the energy spectrum F(w) can be expressed through N,

F(w)dw = 2nwy, Ny k dk, (4.34)

and the energy spectrum corresponding to solution (4.29) has the following form, called
Zakharov-Filonenko spectrum:

1/3 o
FO(w) = 4re, <—> g (4.35)

This spectrum was found as a solution of equation S,; = 0 [3]. For the spatial spectrum

Iy dk = 2wy, N (k) k dk, (4.36)
solution (4.30) transforms to
pP\Y3 j1/2
I =or p <?> % ~ |25, (4.37)
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Figure 2: Dimensionless wavenumber spectral coefficient (3; plotted in logarithmic scales
(a) and linear scales (b), taken from [20]. Here crosses represent omnidirectional (averaged
by angles) spectrum and dots correspond to (k) = 287 u, g7°° k72, The solid line on (a)
and solid curve on (b) correspond to &(k) ~ k~7/3,

Spectra (4.29), (4.35), (4.37) are realized if we have a source of energy that is concen-
trated at small wave number and generates the amount of energy P in a unit of time. For
the spectrum (4.30), first reported by Zakharov in 1966 [3],

L7 = 21, QP kT~ 2m e, QP P, (4.38)
2 1/3 94/3
FOw) = 4me, QY i (4.39)

Spectra (4.30) and (4.38) can be realized in the case of source of wave action in the high
wave numbers area.

The described spectra exhaust all powerlike isotropic solutions of the stationary kinetic
equation S,; = 0. It is important to stress that thermodynamical solutions N = const
and N = ¢/k'/? are not the solutions of this equation, because their exponents = 0 and
x = 1/2 are far below the lower end of the "window of possibility” x; = 5/2. This fact
means that thermodynamics has nothing in common with the theory of wind-driven sea.

Solutions (4.29) and (4.30) are not the unique stationary solutions of S,; = 0. The
general isotropic solution describes the situation when both the energy source at small
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wave numbers and the wave action source exist simultaneously and have the following

form: s
3 P 1 gl/2 Q ]{71/2
N,g ) — cp (? = L — | (4.40)
Here L is an unknown function of one variable,
L—1 at k—0, L) — e at k— oo (4.41)
Cp

Let us notice that if there is no flux of wave action from infinity, we must put @ = 0.
Under this constrain, the general isotropic solution is the Zakharov-Filonenko spectrum
(4.29), parametrized by a single arbitrary constant P, which is a flux of energy to k — oc.

Frequency spectra with tails in the form F(w) ~ w™* were observed in numerous field
experiments [11-16] and were obtained in numerical experiments as well [17-19]. Spatial
spectra with asymptotics I, ~ k°? were observed also in many experiments [20-22]. A
more careful study of experimental results show that in the majority of cases the spectral
area right behind the spectral peak can be better approximated by tail w™'"/3 in frequency
spectrum and by tail £~7/3 in spatial spectrum. It is seen especially clear in the experiments
by Huang and collaborators ]20]. Figure 2 taken from this article demonstrates coexistence
of both types of KZ spectra.

5 Stationary solutions of kinetic equation: Anisotropic
case

To study anisotropic solutions of equation (4.1) we introduce polar coordinates on k-plane
and put k? = w/g. Thereafter we will use notation
N(w, ¢) dwde = N (k) dk,

2w3

N(w,¢) = 7z N (k). (5.1)
In the spatially homogenous case N(w, ¢) satisfies equation

ON(w, ¢

% = Snl(w7 Qb) (52)

In new variables:
Sp(w, ) = 2mg? / 1T i1 i ios | 0w + w1 — woy — ws3) X
X §(w? cos ¢ + w? cos 1 — Wj COS Py — W COS ¢h3) X
X J(w?sin ¢ + w? sin ¢ — wj sin ¢y — w3 sin ¢y) X
x {w® N(wr, 61) N(wa, 62) N(ws, 63) + wf N(w, ¢) N(ws, ¢2) N(ws, ¢3)—
—w3 N(w,¢) N(wi, ¢1) N(ws, ¢3) = N(w,0) N(wr, ¢1) N(wn, ¢2) |
dw dws dws dgy dgo dos. (5.3)
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Exactly this form of S,; is used for numerical simulation of Hasselmann equation.
Suppose that N(w, ¢) = w™* is isotropic spectrum. Then

—3z+13

w z243 G(z) _4
= F = Zhs 4
Snl 494 ( 9 ) g4 w ) (5 )

where F'(z) is defined by (4.5). Now the "window of opportunity” is: 2 < z < 13/2. Zeros
of G(z) are posed at z; = 5 and 2z, = 14/3 and near these zeros G(z) can be presented as
parabola,

G(2) ~ 16.05(z — 5)(z — 14/3). (5.5)

To make the motion constants more conspicuous, we introduce the elliptic differential
operator

Liwd) = (2542 L) fwo) (5.6)
L=\ T2 Dp? “ '
with following parameters: 0 < w < 0o, 0 < ¢ < 27. Equation

LG=6w—-uw)o(od—7¢) (5.7)
with boundary conditions

Glomo =0,  Guowo<oo, G(27) = G(0),

can be resolved as

Glw,W' ¢ —¢) = \/_ Z ein(¢—¢")

Y {(WK)A O —w) + <£>Z° Ow - w’)] , (5.8)

where A, = 1/2v/1 + 8n2. Now we present S, in the form:

e 27
Alw, b) :/0 dw’/o A6 G(w, ', 6 — &) Su(', &). (5.9)

Notice that A(w, ) is a regular integral operator and suppose that N(w,¢) = w™?.
Then

w—3z+15

G50 143 (5.10)

(
Function H(z) is positive and has no zeros. If G(z) is presented by parabola (5.5), H(z)
is just a constant:
H(z) = Hy = 16.05/9 = 1.83. (5.11)
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This fact leads to a bold idea. If we assume that

H
A= 2w N3, (5.12)
g
the nonlinear term S,,; turns to the elliptic operator:
Hy [ 0* 2 0?
Sy =— | =— + = =] w® N3 5.13
! g4 <8w2 + w? Og? w ( )

This is a so-called " diffusion approximation”, introduced in article [23]. Being very simple,

it grasps the basic features of wind-driven sea theory. We will refer mostly to this model,

having in mind that the real case (5.9) does not differ much from it, at least qualitatively.
Let us integrate equation (5.2) by angles. We get:

ON(w,t) 0Q
—_— = 14
ot Ow (5.14)
Here N(w,t) = [Z" N(w, $) dp. Then
2m
Blw,t) = i/ cos ¢ N(w, ¢) do, (5.15)
2w Jo
and the flux of wave action is:
oK 27
= K:/A, do. 5.16
0=" [ A, 0)do (5.16)
After multiplication of equation (5.14) by w one obtains equation
OF(w,t) OP
—+—=0 5.17
o ow (5:17)

where P = K — w 0K /0w is the flux of energy.
Let us introduce now the following definitions: the integrated by angle spectral density
of momentum

2 2
Mo 1) == | coso B(w,0) do, (5.18)
0
the quantity
2
Calwt) = 57 [ o o N(w, ) do, (5.19)
0
and the flux of momentum
2 w? 0A
sz/ A— % 0, 5.20
[T eoso(wa - 220 ds (520)
All these quantities are connected by equation
oM, OR,
= 0. 5.21
ot ow (5.21)

21



Equations (5.14), (5.17) and (5.21) are averaged by angle balance equations for the basic
conservative quantities.

Now we can return to the question formulated above. How many solutions has the
stationary kinetic equation (1.5), (4.1)7 Notice that we simplified it to the linear equation

0? 2 0?
—+—=—=—=] A=0. 22
<6w2 i a¢2> ! (5:22)
In particulary, kinetic equation has anisotropic KZ solution
1 R,
A:—{P+wQ+—COS¢>}, (5.23)
2T w

where P and R, are fluxes of energy and momentum at w — oo and () is the flux of wave
action directed to small wave numbers. In a general case, (5.23) is a nonlinear integral
equation, however in the diffusion approximation the KZ solution can be found in the

explicit form:
1 g4/3
N(w,¢) = (27 Hy)'/3 Wb
By comparison with (4.35), (4.38) we easily find that in this case
1
Cqg=————r
9 2(2m Hy)V/3

1/3
(P +w@ + R Ccos gb) : (5.24)
w

= 0.223, Hy=1.83.

Cp:

This is exactly the arithmetic mean between the values of Kolmogorov constants given by
(3.31).

By multiplication of (5.24) to 2mw we get the general KZ spectrum in the diffusion
approximation:

94/3 R 1/3
Flw) =278 (P +w@+ —= cos gb) . (5.25)
w w
We must be sure that in the isotropic case R, = 0, expression
P
F(w) =278 (P+wQ)"’ (5.26)
w

approximates the generic KZ spectrum with accuracy up to few percent.

If somehow we know the value of A(w, ¢) on the circle w = wyp, we can solve the external
and internal Dirichlet boundary problem for equation (5.22) with boundary condition
Aw, ¢) < 0o at w — o0o. Suppose that

Aw, ¢) = Ao(¢) = Ao + % cos ¢ + i A, (%) R coS Ng. (5.27)
n=2

First two terms in (5.27) present the KZ spectrum with @ =0, P = 27 A,, R, = 27wy A;.
The next terms describe the fast stabilization of any arbitrary solution to the KZ spectrum

at w/wy — oo. The first additional term in (5.27) decays as (wo/w)>5® cos 2¢.
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This stabilization to KZ spectrum is actually the "angular spreading” of wind-driven
wave spectra that is usually observed in field experiments (see, for instance [12]). If @ = 0,
the general KZ solution (5.25) at w — 0 is the following spectrum:

2.78 1 R,
F(w) — 794/3;;1/3 <1+g i cos¢+--->. (5.28)

Similar results were predicted by Kontorovich and Kats [30] and Balk [31].

From (5.27) one can see that A(w, ¢) is parametrized by function of one variable, Ay(¢).
In presence of flux of action @ from infinity one should add to (5.27) an additional term
.- Thus in a general case, a freedom for determination of A consists of the function
that has one variable and one constant. We silently assume that the mapping N — A is
uniquely inversible. This fact is not proven but it is very plausible.

6 Damping due to nonlinear interaction

How we must compare S,,; and S;,”

In this Chapter we show that S, is the leading term in the balance equation (1.11).
In fact, the forcing terms S;, and Sy are not known well enough, thus it is reasonable to
accept the most simple models of both terms assuming that they are proportional to the
action spectrum:

Sin = Yin(k) N (k), (6.1)
Sais = —Vais(k) N (k).
Hence
V(k) = Yin(k) — Yais (k). (6.3)

In reality v4s(k) depends dramatically on the overall steepness p. So far, let us notice
that the balance kinetic equation (1.24) can be written in the form

S+ (k) N =0, (6.4)
and present the S,; term as
Su = F, — 'y Ny, (6.5)
The definition of I'y and Fj are given by (2.5), (2.6).
The solution of stationary equation (6.4) is the following:
F,
Cr— v
The positive solution exists if I'y, > 7. The term I'y can be treated as the nonlinear

damping that appear due to four-wave interaction. This damping has a very powerful
effect. A "naive” dimensional consideration gives

Ny =

(6.6)

2

I~ k9N (6.7)

W
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however, this estimate works only if k& ~ k,; k, being the wave number of the spectral
maximum.
Let k > k,. Now for I';, one gets

Fk = 271'92 / |Tkk1,kk3|2 5(wk1 — wk3) Nklng dk’ldkg (68)

The main source of Iy, is the interaction of long and short waves. To estimate integral (2.6)
more accurately, we assume that the spectrum of long waves is narrow in angle, N (k1,6;) =
N (k1) 6(6;). Long waves propagate along the axis z and k is the wave vector of short wave
propagating in direction 6. For the coupling coefficient we must put Thx, ks = 2k3k cos 6.
Then o

Ty = 87¢%2 k2 cos? /O k2 N2 (k) ey (6.9)

Even for the most mildly decaying KZ spectrum, N, ~ k=236 the integrand behaves like
ky /% and the integral diverges. For more steep KZ spectra the divergence is stronger.
Let us estimate I'y for the case of "mature sea”, when the spectrum can be taken in

the form 3/2
3 F k
N, ~—-—— L _09(k—-L). 1

Here E is the total energy. By plugging (6.10) to (6.9) one gets equation
o \?
I, = 361w (—) 1, cos” 6, (6.11)
Wp

that includes a huge enhancing factor: 367 ~ 113.04. For the very modest value of
steepness, 1, ~ 0.05, we get

3
T, =~ 7.06 - 104w <i> cos? 0. (6.12)
Wp

In the isotropic case, to find I'y for w/w, > 1 we need to perform simple integration
over angles that yields

27 27 9 5 9
/O /O T3 4, 01 0 = - (27)°,

thus instead of (6.11) we get:

Ty = 5mg®/2k? / k32N (k)2 dky (6.13)
0
or 3
457 w
L, =—q¢%w|—=| ui 6.14
o w(%) it (614
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Finally, assuming that
3 FE

N 5\/5}@/2’

we get from (6.8) the following estimate for I'), = I'|j—g,:

kp

T, ~ 9wy, (6.15)

Even in this case we have a pretty high enhancing factor: 97 ~ 28.26. In fact in all known
models 'y surpasses 7, at least in order of magnitude even for these very smooth waves.

In the presence of peakedness
Ty~ Awppis. (6.16)

Here A ~ 47w,/éw is the enhancing factor due to peakedness. If Au}% ~ 1, then T, is
associated with the maximal growth of modulational instability for monochromatic wave:
Iy >~ Ymod ~ wp,uz. IfA~1/ ,u]%, the nonlinearity becomes so strong that the weak-
turbulent statistical approach is not applicable. This is quite realistic situation. Suppose
that p, ~ 0.11 and w,/dw =~ 5. Then Aug ~ (.76 and the weak turbulent description
is hardly correct. In the situation of strong nonlinearity the wind-driven sea generates
freak waves (see [24, 25]). The very fact of their existence as a common phenomenon is an
implicit proof of S,; domination in the energy balance.

Notice that I'y, diverges for KZ spectra. However, it does not hurt the spectra existence
because in the full kinetic equation the divergence in I'j, is cancelled by divergence in F}.
Indeed, if we consider the contribution of small wave-numbers in integral (2.5), we end up
with the following expression:

Fk = 27Tg2 Nk/ ’Tkk1,kk3’2 (5(wk1 — wks) Nk1Nk3 dkldkg >~ Nk Fk (617)

In negligence of 7, equation (4.1) is satisfied automatically.

The results obtained in this Chapter show that the four-wave nonlinear interaction
is a very strong effect. Strong turbulence of near-surface air boundary layer makes the
development of reliable theory of air-water interaction, including a well-justified analytical
calculation of ~,, an extremely difficult task. Field and laboratory measurements of 7
are difficult either, and the scatter in determination of v; is of order of v, itself. Anyway,
comparison of calculated above I'j, with experimental data on ~; shows that I'y surpasses
v at least in the order of magnitude. This fact is demonstrated on Figure 3, where
experimental data are taken from [26].

As a result, we can make the conclusion that .S,; is the leading term in the balance
equation (1.11) and that the rear face of the spectrum is describes by solution of equation
(4.1), which has a rich family of solutions. In particulary, this equation describes the
angular spreading.

On Figure 4 we demonstrate that for the nonlinear interaction term S,; = Fj, — Iy N,
the magnitudes of constituents Fj and I'y, N, essentially exceed their difference. They are
one order higher than the magnitude of S,,;!
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Figure 3: Comparison of experimental data for the wind-induced growth rate 27 7;, (w)/w
taken from [26] and the damping due to four-wave interactions 27 I'(w) /w, calculated for
narrow in angle spectrum at p ~ 0.05 using Eq. 6.11 (dashed line)

_6 Il 1 1 1 1 1 1
0.5 1 1.5 2 2.5 3 3.5 4 4.5
(n/u)p

Figure 4: Split of nonlinear interaction term S,; (central curve) into Fj (upper curve) and
[y Nk (lower curve)
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The dominance of S,; was not apparent until now for two reasons. First, it is not
correct to compare S,; and S;,; instead one should compare 'y and ;. Second, the widely
accepted models for Sy, essentially overestimate dissipation due to white capping. As a
result, the dominance of S,,; is masked. We offer an alternative model for Sy, which will
be published in forthcoming article [27]. Preliminary results obtained in this direction were
reported on ICNAAM-2009, Crete, Rethimno, September 2009 [28].

Author is grateful to Vladimir Geogjaev and Sergei Badulin for permission to include
the results of numerical computations presented in Fig.1 and Fig. 4 to this talk. The
details of these simulations will be published soon.
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