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1 Introduction

In the presented talk we discuss some theoretical aspects of the physics of wind-driven
sea. On our opinion, some important questions of this theory are not clarified enough
and must be elucidated. This clarification is necessary to provide an adequate comparison
of the theory and the experiment, otherwise costly and laborious field and laboratory
measurements could not be properly interpreted and understood.

The first question is about the correct definition of wave action Nk(t), which obeys the
Hasselmann kinetic equation

dN

dt
= Snl + Sin + Sdis, (1.1)

augmented by the source and the dissipation terms. How to find the current action spec-
trum Nk(t) from experimental data? What is measured in the best experiments, is the
space-time spectrum

Qkω =< |ηkω|2 > . (1.2)

Here ηkω is the Fourier transform of the surface elevation. The most advanced definition
of wave action, used in many research papers (see, for example [1,2]), is the following:

Nk =
2

ωk

∫

∞

0
Qkω dω. (1.3)

Formula (1.3) is certainly correct for waves of very small amplitude in the limit µ → 0,
where µ is a characteristic average steepness of the surface. At a finite steepness, it can
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be treated as the first term in expansion

Nk = N0(k) + µ2 N1(k) + · · · . (1.4)

Now N0(k) is given by (1.3), while N1(k) is the subject for determination. One can think
that this question is not very important because even for the most steep young waves
µ2 ' 0.01, and the accuracy of (1.3) looks good. However, our preliminary estimates
show that the ratio N1(k)/N0(k) is a fast growing function on k, thus for spectral tails the
difference between Nk and N0(k) might be essential.

Now we formulate the inverse problem. Suppose we know Nk. How to find Qkω?
In the linear approximation, at µ → 0, the answer is known:

Qkω =
ωk

2
(Nk δ(ω − ωk) + N−k δ(ω + ω−k)) . (1.5)

What happens if µ is finite? In the neighborhood of ω = ωk we should perform replacement

δ(ω − ωk) →
1

π

Γk

(ω − ω̃k)2 + Γ2
k

, (1.6)

where ω̃k = ωk + µ2ω1k + · · · is renormalized frequency and Γk ' µ4 Γ̃k + · · · is effective
dissipation due to four-wave processes. As far as µ2 is small, one can think that both
shifting of ωk and blurring of δ-function are weak effects. However, the quotients ω1k/ωk

and Γ̃k/ωk are growing functions on k, thus for k � kp (kp is the wave number of spectral
peak) derivation from simple formula (1.5) could be essential. There is one more important
effect. In the real sea all waves could be separated in two classes: ”resonant waves” with
ω ∼ ωk and ”slave harmonics” caused by quadratic nonlinearity of primitive dynamic
equations. The slave waves do not obey dispersion relations, as a result their frequency
spectrum for the given k is a broad function, not concentrated at ω ' ωk.

Accurate determination of N1(k) at given Qkω and Qkω at given N(k) is possible but
it is technically cumbersome problem. In Chapters 2, 3 we are taking first but important
steps to their solution. In Chapter 4 we study axial asymmetric solutions of equation

Snl = 0, (1.7)

that is known since 1966 ([3], see also [4, 5]). This equation has exactly two powerlike
solutions:

N1(k) = cp

(

P

g2

)1/3
1

k4
, (1.8)

N2(k) = cq

(

Q

g3/2

)1/2
1

k23/6
. (1.9)

Solution (1.8) is known as Zakharov-Filonenko spectrum [4]. Here P is the flux of energy
from small wave numbers and Q is the flux of wave action from high wave numbers.
Kolmogorov constants cp and cq were not known but now they are calculated:

cp = 0.219, cq = 0.227. (1.10)
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General isotropic solutions of Eq. (1.7) depend on two constants P and Q. In Chapter
5 we discuss the general anisotropic solution of this equation. We show that the solution
is defined by one arbitrary constant, the flux of wave action from high wave numbers, and
one arbitrary function on angle. In the axially symmetric case this function degenerates
to the constant P . The general anisotropic solution of (1.7) describes angular spreading
of spectrum growing with frequency. The last Chapter 6 is the most important from the
practical view-point. We discuss the balance equation in the universal domain ω � ωp,

Snl + Sin + Sdis = 0. (1.11)

Apparently in some domain on k-plane Sin + Sdis > 0. Suppose that Sin = γ(k) Nk. We
notice that Snl can be presented in the form

Snl = Fk − Γk Nk, (1.12)

and the nonlinear wave interaction process is predominating if Γk � γk. We show that
this condition is satisfied in majority of realistic cases, if the waves are not very young. It
means that, as we claimed before, the nonlinear wave interaction is the dominating process
in the wind-driven sea.

2 What is the wave action?

This is the widely used Hasselmann equation:

∂N

∂t
+

∂ω̃

∂~k

∂N

∂~r
= Snl, (2.1)

Snl = πg2
∫

|Tkk1,k2k3
|2 δ(k + k1 − k2 − k3) δ(ωk + ωk1

− ωk2
− ωk3

) ×
×(Nk1

Nk2
Nk3

+ NkNk2
Nk3

− NkNk1
Nk2

− NkNk1
Nk3

)dk1dk2dk3. (2.2)

Here ωk =
√

g k tanh kH, H is depth, Tkk1k2k3
= Tk1kk2k3

= Tk2k3kk1
= Tkk1k3k2

are coupling
coefficients, and

ω̃(k) = ω(k) + 2g
∫

Tkk1,kk1
Nk1

dk1 (2.3)

is renormalized frequency.
As it was mentioned before, the nonlinear interaction term Snl can be presented in the

form
Snl = Fk − Γk Nk, (2.4)

where

Fk = πg2
∫

|Tkk1k2k3
|2 δ(k+k1−k2−k3) δ(ωk +ωk1

−ωk2
−ωk3

) Nk1
Nk2

Nk3
dk1dk2dk3 (2.5)
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and Γk, the dissipation rate due to the presence of four-wave processes, is the following:

Gk = πg2
∫

|Tkk1,k2k3
|2 δ(k + k1 − k2 − k3) δ(ωk + ωk1

− ωk2
− ωk3

) × (2.6)

×(Nk1
Nk2

+ Nk1
Nk3

− Nk2
Nk3

) dk1dk2dk3. (2.7)

One can say that in the real nonlinear sea the dispersion relation ω = ωk is renormalized
and becomes a complex function

ωk → ω̃k +
1

2
iΓk. (2.8)

Eq. (2.1), (2.2) are written for the wave action spectrum Nk(~r, t). What is the exact
definition for the wave action? How Nk(~r, t) can be expressed through the observable
measurable quantities? These are not that simple questions.

Making a snapshot of the surface from two points one can get its stereoscopic image
and restore the shape of elevation η(~r). If we perform nonsymmetric Fourier transform
and define

ηk =
1

(2π)2

∫

η(~r) e−ikr d~r, (2.9)

we can introduce the spatial spectrum

Qk =< |ηk|2 > . (2.10)

Making a seria of snapshots in consequent moments of time one can restore the full space-
time spectrum

Qkω =< |ηkω|2 > . (2.11)

Apparently,

Qk =
∫

∞

−∞

Qkω dω. (2.12)

What is the wave action Nk? In some articles and monographs we can find the following
definition:

Nk =
Qk

ωk

. (2.13)

This is just a widely spread carelessness. Spectrum Qk is an even function, Q−k = Qk,
while Nk certainly does not obey this restriction. One can present the spatial spectrum in
the form

Qk =
ωk

2
(nk + n−k), (2.14)

where nk is the wave action. We deliberately denoted it by low-case letter, because nk and
Nk are different wave actions.

The wave field consists of ”resonant” and ”slave” harmonics. The resonant harmonic
with wave vector ~k has a frequency close to the renormalized frequency ω̃k. The most
strong slave harmonics appear as a result of interaction of two resonant harmonics. Suppose
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they have wave vectors ~k1, ~k2. In the first order of nonlinearity they generate four slave
harmonics with wave vectors ~p1, ~p2,−~p1,−~p2 and frequencies Ω1, Ω2,−Ω1,−Ω2. Here ~p1 =
~k1 − ~k2, ~p2 = ~k1 + ~k2, and Ω1 = ω1 − ω2, Ω2 = ω1 + ω2. There is no any definite relation
between the wave vector and the frequency for slave harmonics.

Returning to the wave action, let us explain now the difference between nk and Nk.
Nk is the ”refined” wave action that includes resonant harmonics and slave harmonics of
higher order only and nk is the ”total” wave action that includes both resonant and all slave
harmonics. Apparently, nk > Nk and is directly connected with experimentally measurable
spatial spectrum by relation (2.14). But nk does not obey the Hasselmann equation. On
the contrary, the ”purified” wave action Nk in principle cannot be measured in any kind
of experiment. But exactly this sort of wave action satisfies the Hasselmann equation. As
a result, all operational models solve the Hasselmann equation augmented with additional
terms: Sin, the input from wind, and Sdis, the dissipation due to wave breaking. Hence
the operational models do predict Nk. At the same time, experimentalists can measure
the nk only.

On the first glance we see serious discrepancy, however nobody pays any attention.
Why this happens?

To give an answer we should estimate the relative difference between nk and Nk. Let
us denote

α(k) =
nk − Nk

nk

. (2.15)

In a typical observed spectrum of wind-driven sea we should separate spectral area near
to the peak frequency ω ∼ ωp and the tail ω � ωp. In the energy capacitive spectral band
close to ωp, α is small:

α ∼ µ2.

The characteristic steepness µ is defined as

µ2 ' ω4
p

g2
σ2,

where σ is the total energy of waves. Even for young waves µ2 ≤ 0.01, thus the relative
difference between n and N for deep water is not more than one percent and can easily
be neglected. However, α(k) is a fast growing function on k. An accurate estimate of
dependance α on frequency at ω ≥ ωp is not a subject for current research. The article
on this topic will be presented for publication soon, however our preliminary results show
that this dependance is very fast growing:

α ' µ2

(

ω

ωp

)3

. (2.16)

As it was mentioned above, in the area ω ∼ ωp one can neglect the difference between
nk and Nk. In this area we can replace Eq. (2.10) by

Qk =
ωk

2
(Nk + N−k). (2.17)
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There is essential difference between (2.14) and (2.17). Because nk > 0 at any k, wave
vectors of slave harmonics cover all k-plane, thus determination of nk from Qk is impossible
in principle. On the contrary, in many practical cases Nk is nonzero only inside the
bounded domain G on the k-plane. At the same time N−k 6= 0 inside the domain G̃ only,
which is radially symmetric to G. In other words, if vector ~k belongs to G, vector −~k
belongs to G̃. Suppose that G and G̃ have no intersection. In this case in the domain
G we have Nk = 2Qk/ωk. In spite of presence of factor 2 in (2.14) the integral identity
∫

Qk dk =
∫

ωk Nk dk is the same as we would have used the naive and blatantly incorrect
formula (2.13).

In some important cases domains G and G̃ have intersection. In this case we face
ambiguity in determination of Nk from (2.17). To overcome this ambiguity one should use
the space-time spectrum Qk,ω and define

nk =
2

ωk

∫

∞

0
Q(k, ω) dω. (2.18)

The equivalent formula is presented in the monograph of Monin and Krasitsky [1] printed
in Russia in 1985. It was also used by Rosental et al [2] approximately in the same time.
In this case again

∫

ωk nk dk =
∫

∞

−∞

Q(k, ω) dωdk. (2.19)

Let us notice that formulae (2.14), (2.18) account slave harmonics and can be used with
comparison of spectral tails obtained from the experiment and from solution of Hasselmann
equation, both numerical and analytical, with caution. They work up to accuracy of µ2 in
the neighborhood of spectral peak, but can lead to essential errors in area of spectral tails.
Preliminary estimate for accuracy of expression (2.18) will be done in the next Chapter.

3 How to separate resonant and slave harmonics?

To make the accurate separation of resonant and slave harmonics and to find an explicit
formula that connects Q(k, ω) and Nk, one should use Hamiltonian formalism and imple-
ment the canonical transformation, excluding cubic terms in the Hamiltonian. This is a
cumbersome mathematical procedure. In this Chapter we will demonstrate how it could
be done in the most economic way.

We study the weakly nonlinear waves on the surface of an ideal fluid of infinite depth
in an infinite basin. The vertical coordinate is

−H < z < η(r, t), r = (x, y), (3.1)

the fluid is incompressible, H is the depth of fluid,

div V = 0, (3.2)
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and velocity V is a potential field
V = ∇Φ, (3.3)

where potential Φ satisfies the Laplace equation

∆ Φ = 0 (3.4)

under boundary conditions

Φ|z=η = Ψ(r, t), Φz|z=−∞ = 0. (3.5)

The total energy of the fluid, H = T + U , has the following terms:

T =
1

2

∫

d~r
∫ η

−∞

(∇Φ)2 dz =
1

2

∫

Ψ Φn dS, (3.6)

U =
1

2
g
∫

η2 d~r. (3.7)

The Dirichlet-Neumann boundary problem (3.4), (3.5) is uniquely resolved; thus the
flow is defined by fixation of η and Ψ. This pair of variables is canonical; thus evolution
equations for η, Ψ take the form [6]:

∂η

∂t
=

δH

δΨ
,

∂Ψ

∂t
= −δH

δη
. (3.8)

After non-symmetric Fourier transform,

Ψ(r) =
∫

Ψ(k) eikr dk, Ψ(k) =
1

(2π)2

∫

Ψ(r) e−ikr dr, (3.9)

equation (3.8) reads:
∂η

∂t
=

δH̃

δΨ∗

k

,
∂Ψ

∂t
= −δH̃

δη∗

k

, (3.10)

H̃ =
1

4π2
H = H0 + H1 + H2 + · · · (3.11)

In [7-9] was shown that Hamiltonian H̃ can be expanded in Taylor series in powers of kηk:

H0 =
1

2

∫

{

Ak|Ψk|2 + g |ηk|2
}

dk, Ak = k tan kH

H1 =
1

2

∫

L(1)(k1, k2)Ψk1
Ψk2

ηk3
δ(~k1 + ~k2 + ~k3) dk1 dk2 dk3 (3.12)

H2 =
1

2

∫

L(2)(k1, k2, k3, k4)Ψk1
Ψk2

ηk3
ηk4

δ(k1 + k2 + k3 + k4) dk1dk2ηk3
ηk4

Here

L(1)(k1, k2) = −(k1, k2) − Ak1
Ak2

(3.13)

L(2)(k1, k2, k3, k4) =
1

2
(k2

1A2 + k2
2 A1) +

1

4
A1A2(A1+3 + A2+4 + A1+4 + A2+3)
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Now we can introduce normal variables ak:

ηk =
1√
2

(

Ak

g

)1/4

(ak + a∗

−k)

Ψk =
i√
2

(

g

Ak

)1/4

(ak − a∗

−k) (3.14)

Normal variables obey the following Hamiltonian equations:

∂ak

∂t
+ i

δH

δa∗

k

= 0 (3.15)

All terms in the expansion of Hamiltonian (3.11) must be expressed in terms of ak:

H0 =
∫

ωk|ak|2dk

H1 =
1

2

∫

V
(1,2)
kkak2

(aka
∗

k1
a∗

k2
+ a∗

kak1
ak2

)δ(k − k1 − k2)dkdk1dk2 +

+
1

6

∫

V
(0,3)
kkak2

(akak1
ak2

+ a∗

ka
∗

k1
a∗

k2
)δ(k + k1 + k2)dkdk1dk2 (3.16)

V
(1,2)
kk1k2

=
g1/4

2
√

2







(

Ak

Ak1
Ak2

)1/4

L(1)(k1, k2) −
(

Ak1

AkAk2

)1/4

L(1)(−k, k1) −
(

Ak2

AkAk1

)1/4

L(1)(−k, k2)







(3.17)

V
(0,3)
kk1k2

=
g1/4

2
√

2







(

Ak

Ak1
Ak2

)1/4

L(1)(k1, k2) +

(

Ak1

AkAk2

)1/4

L(1)(k, k1) +

(

Ak2

AkAk1

)1/4

L(1)(k, k2)







(3.18)
Now we can define the ”total” or rough action:

nk δ(k − k′) = g < ak a∗

k′ > . (3.19)

It is clear that fundamental relation (2.14) is satisfied. Then, we perform the Fourier
transform in time

akω =
1

2π

∫

a(k, t)e−iωtdt (3.20)

and introduce
nkω δ(k − k′) δ(ω − ω′) = g < akω a∗

k′,ω′ > . (3.21)

The space-time spectrum of elevation is simply

Qk,ω =
ωk

2
(nk,ω + n−k,−ω) (3.22)

To separate resonant and slave harmonics we must perform a canonical transformation to
new variables, excluding cubic terms in the Hamiltonian. This is a standard procedure
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known in celestial dynamics down to nineteenth century. However in our case this proce-
dure is rather cumbersome. It was first done by Krasitski [9]. He found transformation of
initial canonical variables ak to new canonical variables bk, which contain first order slave
harmonics only. Variables ak are presented by infinite series in new variables bk:

ak = bk + a
(1)
k + a

(2)
k + a

(3)
k . (3.23)

He calculated first two terms in this expansion and found the following expressions:

a
(1)
k =

∫

Γ(1)(~k,~k1, ~k2) bk1
bk2

δ(~k − ~k1 − ~k2) dk1 dk2

− 2
∫

Γ(1)(~k2, ~k,~k1) b∗k1
bk2

δ(~k + ~k1 − ~k2) dk1 dk2

+
∫

Γ(2)(~k,~k1, ~k2) b∗k1
b∗k2

δ(~k + ~k1 + ~k2) dk1 dk2

a
(2)
k =

∫

B(~k,~k1, ~k2, ~k3) b∗k1
bk2

bk3
δ(~k + ~k1 − ~k2 − ~k3) dk1 dk2 dk3 + · · · (3.24)

where

Γ(1)(~k,~k1, ~k2) = −1

2

V (1,2)(~k,~k1, ~k2)

(ωk − ωk1
− ωk2

)

Γ(2)(~k,~k1, ~k2) = −1

2

V (0,3)(~k,~k1, ~k2)

(ωk + ωk1
+ ωk2

)
(3.25)

and

B(~k,~k1, ~k2, ~k3) = (3.26)

Γ(1)(~k1, ~k2, ~k1 − ~k2) Γ(1)(~k3, ~k,~k3 − ~k) + Γ(1)(~k1, ~k3, ~k1 − ~k3) Γ(1)(~k2, ~k,~k2 − ~k)

−Γ(1)(~k,~k2, ~k − ~k2) Γ(1)(~k3, ~k1, ~k3 − ~k1) − Γ(1)(~k1, ~k3, ~k1 − ~k3) Γ(1)(~k2, ~k1, ~k2 − ~k1)

−Γ(1)(~k + ~k1, ~k,~k1) Γ(1)(~k2 + ~k3, ~k2, ~k3) + Γ(2)(−~k − ~k1, ~k,~k1) Γ(2)(−~k2 − ~k3, ~k2, ~k3)

On our opinion, Krasitski used a rather long way for calculation of terms in expansion
(3.23). He directly checked the validity of canonicity condition

{ak, ak′} =
∫

{

δak

δbk′′

δak′

δb∗k′′

− δak

δb∗k′′

δak′

δbk′′

}

dk′′ = 0

{ak, a
∗

k′} =
∫

{

δak

δbk′′

δa∗

k′

δb∗k′′

− δak

δb∗k′′

δa∗

k′

δbk′′

}

dk′′ = δ(k − k′) (3.27)

Calculation of a
(3)
k by this method is just impossibly complicated task. The canonical

transformation can be found using more sophisticated methods. The first one was offered
in the article [7] in 1998. Let us consider that ak is a solution of Hamiltonian system

∂ak

∂τ
+ i

δR

δa∗

k

= 0 (3.28)
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where τ is ”artificial time” and R is an efficient Hamiltonian

R = i
∫

Γ
(1)
kk2k2

(a∗

kak1
ak2

− aka
∗

k1
a∗

k2
) δ(k − k1 − k2) dkdk1dk2 +

+
i

3

∫

Γ
(2)
kk1k2

(a∗

ka
∗

k1
a∗

k2
− akak1

ak2
) δ(k + k1 + k2) dkdk1dk2 (3.29)

Eq. (3.28, 3.29) must be augmented with initial condition

ak|τ=0 = bk. (3.30)

The needed canonical transformation is obtained if we put τ = 1. Expanding the solution
in Taylor series of τ and putting τ = 1 at the end, we reproduce the result of Krasitski
(3.24 - 3.26) in a much more economical way.

Now we demonstrate another, more traditional way for constructing of canonical trans-
formation, which is based on finding of generating function. We present ak in the form

ak =
1√
2
(qk + ipk), q−k = q∗k, p−k = p∗k

Functions qk, pk obey equations

∂qk

∂t
=

δH

δp∗k
,

∂pk

∂t
= −δH

δq∗k
(3.31)

where H is the same Hamiltonian expressed through qk, pk. Now

H0 =
1

2

∫

ωk(|qk|2 + |pk|2)dk (3.32)

H1 =
1

2

∫

Lkk1k2
qk pk1

pk2
δ(k + k1 + k2)dkdk1dk2 (3.33)

Lkk−1k2
=

g1/4 A
1/4
k

A
1/4
k−1 A

1/2
k2

L
(1)
k1k2

(3.34)

We will perform transformation to new variables Rk, ξk using the following generation
function (see also [10]):

S =
∫

Rk qk dk +
1

2

∫

Akk1k2
qk qk1

Rk2
δ(k + k1 + k2) dkdk1dk2 +

+
1

3

∫

Bkk1k2
Rk Rk1

Rk2
δ(k + k1 + k2)dkdk1dk2 (3.35)

The ”old momentum” pk and ”new coordinates” ξk are expressed as follow

pk =
δS

δq−k

= Rk +
∫

A−k,k1,k2
qk1

Rk2
δ(k − k1 − k2)dk1dk2 (3.36)

ξk =
δS

δR−k

= qk +
1

2

∫

Ak1,k2,−k qk1
qk2

δ(k − k1 − k∗

2) dk1dk2 +

+
∫

B−k,k1,k2
Rk1

Rk2
δ(k − k1 − k − 2) dk1dk2 (3.37)
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Apparently Bkk1k2
is symmetric with respect to all permutations and Akk1k2

= Akk2k1
.

To find A,B we notice that in the first approximation

qk = ξk −
1

2

∫

Ak1,k2,−k ξk1
ξk2

δ(k − k1 − k2) dk1dk2 −

−
∫

B−k,k1,k2
Rk1

Rk2
δ(k − k1 − k2) dk1dk2 (3.38)

and in (3.36) we can replace qk → ξk. Now we plug qk, pk to (3.32). In (3.33) we can
just replace qk → ξk and pk → Rk. From the condition of eliminating cubic terms that
are proportional to ξkξk1

ξk2
and ξkpk1

pk2
, and the symmetry conditions we find after some

calculations the following nice and elegant expressions for A,B:

Akk1k2
= −1

4

(

L0 + L1 + L2

ω0 + ω1 + ω2

+
L0 + L1 − L2

ω0 + ω1 − ω2

)

+
1

4

(

L0 − L1 − L2

ω0 − ω1 − ω2

+
L1 − L0 − L2

ω1 − ω0 − ω2

)

(3.39)

Bkk1k2
= −1

4

(

L0 + L1 + L2

ω0 + ω1 + ω2

+
L0 − L1 − L2

ω0 − ω1 − ω2

)

− 1

4

(

L1 − L0 − L2

ω1 − ω0 − ω2

+
L2 − L0 − L1

ω2 − ω0 − ω1

)

(3.40)
Here

L0 = Lkk1k2
, L1 = Lk1kk2

, L2 = Lk2kk1

ω0 = ωk, ω1 = ωk1
, ω2 = ωk2

(3.41)

To reproduce the results of Krasitski one has to expand old variables qk, pk in powers of
new variables ξk, Rk, then bk as follow

bk =
1√
2





(

g

Ak

)1/4

ξk − i

(

Ak

g

)1/4

Rk



 (3.42)

New normal variables bk satisfy Zakharov’s equation [6]

∂bk

∂t
+ iωk bk +

i

2

∫

Tkk1k2k3
b∗k1

bk2
bk3

δk+k1−k2−k3
dk1dk2dk3 = 0 (3.43)

Here Tkk1k2k3
is the same as in (2.2). An explicit expression for Tkk1k2k3

is too complicated
to be presented here. Notice that now we can calculate nk = |ak|2 by use of expansion
(3.23). We will assume that triple correlations of new variables are zero

< bkbk1
bk2

>= 0, < b∗kbk1
bk2

>= 0 (3.44)

We use also the Gaussian closure for quartic variables

< b∗kb
∗

k1
bk2

bk3
>= Nk Nk1

(δk−k2
δk1−k3

+ δk−k3
δk1−k2

) (3.45)
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Here Nk is the ”refined” action. After some calculations we find that nk and Nk are
connected by the following relation (it can be found in [8]):

nk = Nk +
1

2

∫ |V (1,2)(~k,~k1, ~k2)|2
(ωk − ωk1

− ωk2
)2

(Nk1
Nk2

− NkNk1
− NkNk2

) δ(~k − ~k1 − ~k2) dk1dk2 +

+
1

2

∫ |V (1,2)(~k,~k1, ~k2)|2
(ωk1

− ωk − ωk2
)2

(Nk1
Nk2

+ NkNk1
− NkNk2

) δ(~k1 − ~k − ~k2) dk1dk2 +

+
1

2

∫ |V (1,2)(~k2, ~k,~k1)|2
(ωk2

− ωk − ωk1
)2

(Nk1
Nk2

+ NkNk2
− NkNk1

) δ(~k2 − ~k − ~k1) dk1dk2 +

+
1

2

∫ |V (0,3)(~k,~k1, ~k2)|2
(ωk + ωk1

+ ωk2
)2

(Nk1
Nk2

+ NkNk1
+ NkNk2

) δ(~k + ~k1 + ~k2) dk1dk2 (3.46)

The difference between nk and Nk,

∆k =
nk − Nk

Nk

,

is essential on shallow water. However, even on deep water ∆k is a fast growing function
on k.

The relation between space-time spectra of ”total” nkω and ”purified” Nkω versions of
wave action is not known so far. This is a subject for future research. However, Nkω can
be presented in the form

Nkω =
1

π

Γk Nk

(ω − ω̃k)2 + Γ2
k

(3.47)

and we can put approximately

Qkω =
1

2
ωk(Nkω + N−k,−ω) =

1

2π

{

Γk Nk

(ω − ω̃k)2 + Γ2
k

+
Γ−k N−k

(ω − ω̃k)2 + Γ2
k

}

(3.48)

After integration by ω and assuming that arctan Γk/ωk ∼ Γk/ωk, one gets the following
relation

Nk =
∫

∞

0
N(k, ω)dω +

1

π

(

Nk Γk

ωk

− N−k Γ−k

ω−k

)

(3.49)

From (3.48) we see that identity

Nk =
∫

∞

0
N(k, ω) dω (3.50)

is valid up to the relative accuracy Γk/ωk. The value of this accuracy will be discussed
in Chapter 6. Near the spectral peak it is of order 4πµ4. Identity (2.18) is satisfied with
much less accuracy. Even near the spectral peak the accuracy is of order µ2 and it becomes
worse at k � kp. An explicit expression for Q(k, ω) through Nk will be the subject of a
separate article.
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4 Stationary solutions of kinetic equation: Isotropic

case

In this chapter we address the following question: How to solve the stationery kinetic
equation

Snl ≡ 0 ? (4.1)

Formally speaking, this equation has thermodynamically equilibrium solutions

Nk =
T

ωk + µ
, (4.2)

where temperature T and µ are constants. It might sound like paradox, but in fact spec-
trum (4.2) in not a real solution of equation (4.1). Since this moment we discuss only the

case of deep water and consider ω =
√

gk. Also we denote that k = |~k|.
To justify this statement we notice that in two particular cases, µ = 0 and T = cµ, µ →

∞, solution (4.2) takes form

N =
T

ωk

=
T√
g

k−1/2

N = c (4.3)

Both these solutions are isotropic powerlike functions

Nk = k−x (4.4)

with particular values x = 1/2, 0. Let us study the general powerlike solution of (4.1).
By plugging (4.4) into (4.1) we find that each particular term in Snl is diverging, but in
different terms the divergence can be cancelled, thus there is a ”window of opportunity”
for the exponent x. As a result,

Snl = g3/2 k−3x+19/2 F (x). (4.5)

Here F (x) is a dimensionless function, defined inside interval x1 < x < x2. The edges
of the window, x1 and x2, are the subject for determination. Outside the ”window of
opportunity”, at x < x1 and x > x2, F (x) = ∞. Thus all admitted values of x must be
posed between x1 and x2.

Let the quadruplet of waves be formed of wave vectors satisfying resonant conditions

~k1 + ~k2 = ~k3 + ~k4

ωk1
+ ωk2

= ωk3
+ ωk4

(4.6)

Suppose that |k1| � |k|. The three-wave resonant condition,

~k = ~k2 + ~k3, ωk = ωk2
+ ωk3

, (4.7)
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can not be satisfied, thus one of vectors ~k2, ~k3 must be small. If |k3| � |k2|, then

~k2 = ~k + ~k1 − ~k3,

ω(k2) =
√

gk



1 +
1

2

(k,~k1 − ~k3)

k2
+ · · ·



 (4.8)

In the first approximation by small parameter |k1|/|k| one can put ω(k2) = ω(k), ω(k1) =

ω(k3) and |k3| ' |k1|. In other words, vectors ~k1, ~k3 are small and have approximately the
same length k1. If vector k is directed along axis x, the coupling coefficient Tkk1k2k3

depends

on four parameters k, k1, θ1, θ3. Here θ1, θ3 are angles between ~k1, ~k3 and ~k. Remembering
that k1 � k, we calculate the coupling coefficient in this asymptotic domain. A tedious
calculation presented in [11] leads to the following compact result:

Tkk1k2k3
' 1

2
k k2

1 Tθ1,θ3
,

Tθ1,θ2
= 2(cos θ1 + cos θ3) − sin(θ1 − θ3)(sin θ1 − sin θ3). (4.9)

On the diagonal k3 = k1, θ3 = θ1 we get a very simple expression published in 2003 [29]:

Tkk1
' 2k2

1k cos θ1. (4.10)

Suppose that spectrum is separated to the low-frequency component N0(k) and the high-
frequency component N1(k). We assume that N1 � N0 and take into account the interac-
tion between N0 and N1 only. One can see that N1 satisfies the linear diffusion equation

∂

∂t
N1 =

∂

∂ki

Dij k2 ∂

∂kj

N1, (4.11)

where Dij is the tensor of diffusion coefficients,

Dij = 2πg3/2
∫

∞

0
dq q17/2

∫ 2π

0
dθ1

∫ 2π

0
dθ3|T (θ1, θ3)|2 pipjN(θ, q)N(θ3, q) (4.12)

p1 = cos θ1 − cos θ3, p2 = sin θ1 − sin θ3

If spectrum is isotropic and does not depend on angle θ, we get the further simplification:

Dij = D δij, D =
5

8
π3 g3/2

∫

∞

0
q17/2 N2(q)dq. (4.13)

The diffusion coefficient D diverges at k → 0, if x > 19/4. Thus x2 = 19/4.
Let us find behavior of function F (x) near x = x2. In the isotopic case equation (3.9)

reads
∂N1

∂t
=

D

k

∂

∂k
k3 ∂

∂k
N1. (4.14)
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If k → 19/4, we get the following estimate:

F (x) =
19

4
· 11

4
· 5π3

16

1

19/4 − x
' 126.4

19/4 − x
(4.15)

To find x1, the lower end of the window, we should study the influence of short waves to
the long ones. Let us suppose that |k1|, |k2| � k. In the first approximation |k3| = |k|, and

the resonant interaction Snl can be separated into two groups of terms: Snl = S
(1)
nl + S

(2)
nl .

For S
(1)
nl the integrand includes product Nk1

Nk2
. If we put k1 = k2, we get the following

expression for the low-frequency tail of spectrum:

S
(1)
nl = 2πg2

∫

|Tkk1,k1,k3
|2 δ(ω − ωk3

) (Nk3
− Nk) N 2

k1
dk1. (4.16)

Notice, if |k1| � |k|, then |Tkk1,k1,k3
|2 ' k2

1, and integrand in (4.16) is proportional to
k2

1 N2
k1

. If x < 2, the integral diverges.
The group of terms linear with respect to the high-frequency tail of spectrum is more

complicated:

S
(2)
nl = 2πg2 Nk

∫

|Tkk1k2k3
|2 Nk3

(Nk1
− Nk2

) ×
× δ(ωk + ωk1

− ωk2
− ωk3

) δ(k + k1 − k2 − k3) dk1 dk2 dk3. (4.17)

We can perform expansion

Nk1
− Nk3

= pi
∂N

∂k1i

, pi = (k − k3)i. (4.18)

In the general anisotropic case the integrand is proportional to k2
1(p∇Nk1

) and the diver-
gence occurs if x = x1 = 3. However, in the isotropic case this term, the most divergent
one, is cancelled after integration by angles. In this case we should study quadratic terms
in expansion of the integrand in powers of parameter (P, k1)/k

2
1. The most aggressive

term appears from the expansion of δ-function on frequencies δ(ωk1
− ωk1+p + ωk − ωk3

).
Performing integration by angles we end up with equation

∂Nk

∂t
= q k7 Nk

∂N

∂k
, (4.19)

q =
25

16
π3 g3/2 E =

25

8
π3 g3/2

∫

∞

0
k3/2 Nk dk.

Here E is the total energy. Thus in the isotropic case x1 = 5/2 and we get for function
F (x) the following estimate:

F =
5

2

25

8
π3 1

5/2 − x
=

241.86

5/2 − x
. (4.20)
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Figure 1: (a) Plot of function F (x). (b) Plot of function F (x): zoom in the vertical
direction

On Figure 1a is presented the plot of function F (x) for isotropic case that we calculated
numerically. One can see that in the interval x1 < x < x2 function F (x) has exactly two
zeros at

x = y1 = 4, x = y2 =
23

6
. (4.21)

To prove this result, let us consider that spectra are isotropic and present conservation
laws of energy and wave action in the differential form:

∂Ik

∂t
= 2πkωk

∂Nk

∂t
= −∂P

∂k
, (4.22)

P = 2π
∫ k

0
kωk Snl dk, (4.23)

2πk
∂Nk

∂t
=

∂Q

∂k
, (4.24)

Q = 2π
∫ k

0
k Snl dk. (4.25)

Here P is the flux of energy directed to high wave numbers, while Q is the flux of wave
action directed to small wave numbers. Equations

P = P0 = const, Q = Q0 = const (4.26)

apparently are solutions of stationary equation Snl = 0. We will look for the solution in
the powerlike form N = λ k−x; then equations (4.23), (4.25) read

P0 = 2πg2 λ3 F (x)

3(x − 4)
k−3(x−4) (4.27)

Q0 = −2πg3/2 λ3 F (x)

3(x − 26/3)
k−3(x−26/3) (4.28)
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One can see that P0 and Q0 are finite only if F (4) = 0 and F (26/3) = 0, moreover,
if F ′(4) > 0 and F ′(26/3) < 0. We conclude that equation Snl = 0 has the following
solutions:

N
(1)
k = cp

(

P0

g2

)1/3
1

k4
, (4.29)

N
(2)
k = cq

(

Q0

g3/2

)1/3
1

k23/6
. (4.30)

Here cp, cq are dimensionless Kolmogorov constants

cp =

(

3

2π F ′(4)

)1/3

, cq =

(

3

2π |F ′(23/6)|

)1/3

.

On Figure 1b is presented the zoom of function F (x) in vertical coordinate. The
numerics gives F ′(4) = 45.2 and F ′(23/6) = −40.4. In the area of zeros F (x) can be
approximated by parabola,

F (x) ' 256.8(x − 23/6)(x − 4). (4.31)

Let us notice that
F (9/2) = 85.6 (4.32)

thus we get
cp = 0.219, cq = 0.227, (4.33)

and see that the both Kolmogorov constants are numerically small.
In the isotropic case, the energy spectrum F (ω) can be expressed through Nk,

F (ω)dω = 2πωk Nk k dk, (4.34)

and the energy spectrum corresponding to solution (4.29) has the following form, called
Zakharov-Filonenko spectrum:

F (1)(ω) = 4πcp

(

P

g2

)1/3
g2

ω4
. (4.35)

This spectrum was found as a solution of equation Snl = 0 [3]. For the spatial spectrum

Ik dk = 2πωk N(k) k dk, (4.36)

solution (4.30) transforms to

I
(1)
k = 2π cp

(

P

g2

)1/3
g1/2

k5/2
' k−2.5. (4.37)
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Figure 2: Dimensionless wavenumber spectral coefficient βi plotted in logarithmic scales
(a) and linear scales (b), taken from [20]. Here crosses represent omnidirectional (averaged
by angles) spectrum and dots correspond to ξ(k) = 2βI u∗ g−0.5 k−2.5. The solid line on (a)
and solid curve on (b) correspond to ξ(k) ' k−7/3.

Spectra (4.29), (4.35), (4.37) are realized if we have a source of energy that is concen-
trated at small wave number and generates the amount of energy P in a unit of time. For
the spectrum (4.30), first reported by Zakharov in 1966 [3],

I
(2)
k = 2π cq Q1/3 k−7/3 ' 2π cq Q1/3 k2.33, (4.38)

F (2)(ω) = 4π cq Q1/3 g4/3

ω11/3
. (4.39)

Spectra (4.30) and (4.38) can be realized in the case of source of wave action in the high
wave numbers area.

The described spectra exhaust all powerlike isotropic solutions of the stationary kinetic
equation Snl = 0. It is important to stress that thermodynamical solutions N = const
and N = c/k1/2 are not the solutions of this equation, because their exponents x = 0 and
x = 1/2 are far below the lower end of the ”window of possibility” x1 = 5/2. This fact
means that thermodynamics has nothing in common with the theory of wind-driven sea.

Solutions (4.29) and (4.30) are not the unique stationary solutions of Snl = 0. The
general isotropic solution describes the situation when both the energy source at small
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wave numbers and the wave action source exist simultaneously and have the following
form:

N
(3)
k = cp

(

P

g2

)1/3
1

k4
L

(

g1/2 Qk1/2

P

)

. (4.40)

Here L is an unknown function of one variable,

L → 1 at k → 0, L(ξ) → cq

cp

ξ1/3 at k → ∞. (4.41)

Let us notice that if there is no flux of wave action from infinity, we must put Q = 0.
Under this constrain, the general isotropic solution is the Zakharov-Filonenko spectrum
(4.29), parametrized by a single arbitrary constant P , which is a flux of energy to k → ∞.

Frequency spectra with tails in the form F (ω) ' ω−4 were observed in numerous field
experiments [11-16] and were obtained in numerical experiments as well [17-19]. Spatial
spectra with asymptotics Ik ' k5/2 were observed also in many experiments [20-22]. A
more careful study of experimental results show that in the majority of cases the spectral
area right behind the spectral peak can be better approximated by tail ω−11/3 in frequency
spectrum and by tail k−7/3 in spatial spectrum. It is seen especially clear in the experiments
by Huang and collaborators ]20]. Figure 2 taken from this article demonstrates coexistence
of both types of KZ spectra.

5 Stationary solutions of kinetic equation: Anisotropic

case

To study anisotropic solutions of equation (4.1) we introduce polar coordinates on k-plane
and put k2 = ω/g. Thereafter we will use notation

N(ω, φ) dωdφ = N(~k) d~k,

N(ω, φ) =
2ω3

g2
N(~k). (5.1)

In the spatially homogenous case N(ω, φ) satisfies equation

δN(ω, φ)

∂t
= Snl(ω, φ). (5.2)

In new variables:

Snl(ω, φ) = 2πg2
∫

|Tω,ω1,ω2,ω3
|2 δ(ω + ω1 − ω2 − ω3) ×

×δ(ω2 cos φ + ω2
1 cos φ1 − ω2

2 cos φ2 − ω2
3 cos φ3) ×

×δ(ω2 sin φ + ω2
1 sin φ1 − ω2

2 sin φ2 − ω2
3 sin φ2) ×

×
{

ω3 N(ω1, φ1) N(ω2, φ2) N(ω3, φ3) + ω3
1 N(ω, φ) N(ω2, φ2) N(ω3, φ3)−

−ω2
2 N(ω, φ) N(ω1, φ1) N(ω3, φ3) − ω2

3 N(ω, φ) N(ω1, φ1) N(ω2, φ2)
}

dω1 dω2 dω3 dφ1 dφ2 dφ3. (5.3)
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Exactly this form of Snl is used for numerical simulation of Hasselmann equation.
Suppose that N(ω, φ) = ω−z is isotropic spectrum. Then

Snl =
ω−3z+13

4g4
F
(

z + 3

2

)

=
G(z)

g4
ω−3z+13, (5.4)

where F (x) is defined by (4.5). Now the ”window of opportunity” is: 2 < z < 13/2. Zeros
of G(z) are posed at z1 = 5 and z2 = 14/3 and near these zeros G(z) can be presented as
parabola,

G(z) ' 16.05(z − 5)(z − 14/3). (5.5)

To make the motion constants more conspicuous, we introduce the elliptic differential
operator

Lf(ω, φ) =

(

∂2

∂ω2
+

2

ω2

∂2

∂φ2

)

f(ω, φ) (5.6)

with following parameters: 0 < ω < ∞, 0 < φ < 2π. Equation

LG = δ(ω − ω′) δ(φ − φ′) (5.7)

with boundary conditions

G|ω→0 = 0, Gω→∞ < ∞, G(2π) = G(0),

can be resolved as

G(ω, ω′, φ − φ′) =
1

4π

√
ωω′

∞
∑

n=−∞

ein(φ−φ′) ×

×




(

ω

ω′

)∆n

Θ(ω′ − ω) +

(

ω′

ω

)∆n

Θ(ω − ω′)



 , (5.8)

where ∆n = 1/2
√

1 + 8n2. Now we present Snl in the form:

A(ω, φ) =
∫

∞

0
dω′

∫ 2π

0
dφ′ G(ω, ω′, φ − φ′) Snl(ω

′, φ′). (5.9)

Notice that A(ω, φ) is a regular integral operator and suppose that N(ω, φ) = ω−z.
Then

A[ω−z] =
ω−3z+15

g4
H(z),

H(z) =
G(z)

9(z − 5)(z − 14/3)
. (5.10)

Function H(z) is positive and has no zeros. If G(z) is presented by parabola (5.5), H(z)
is just a constant:

H(z) = H0 = 16.05/9 = 1.83. (5.11)
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This fact leads to a bold idea. If we assume that

A =
H0

g4
ω15 N3, (5.12)

the nonlinear term Snl turns to the elliptic operator:

Snl =
H0

g4

(

∂2

∂ω2
+

2

ω2

∂2

∂φ2

)

ω15 N3. (5.13)

This is a so-called ”diffusion approximation”, introduced in article [23]. Being very simple,
it grasps the basic features of wind-driven sea theory. We will refer mostly to this model,
having in mind that the real case (5.9) does not differ much from it, at least qualitatively.

Let us integrate equation (5.2) by angles. We get:

∂N(ω, t)

∂t
=

∂Q

∂ω
. (5.14)

Here N(ω, t) =
∫ 2π
0 N(ω, φ) dφ. Then

B(ω, t) =
g

2ω

∫ 2π

0
cos φN(ω, φ) dφ, (5.15)

and the flux of wave action is:

Q =
∂K

∂ω
, K =

∫ 2π

0
A(ω, φ) dφ. (5.16)

After multiplication of equation (5.14) by ω one obtains equation

∂F (ω, t)

∂t
+

∂P

∂ω
= 0, (5.17)

where P = K − ω ∂K/∂ω is the flux of energy.
Let us introduce now the following definitions: the integrated by angle spectral density

of momentum

Mx(ω, t) =
ω2

g

∫ 2π

0
cos φB(ω, φ) dφ, (5.18)

the quantity

Cx(ω, t) =
ω

2g

∫ 2π

0
cos2 φN(ω, φ) dφ, (5.19)

and the flux of momentum

Rx =
∫ 2π

0
cos φ(ω A − ω2

2

∂A

∂ω
) dφ. (5.20)

All these quantities are connected by equation

∂Mx

∂t
+

∂Rx

∂ω
= 0. (5.21)
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Equations (5.14), (5.17) and (5.21) are averaged by angle balance equations for the basic
conservative quantities.

Now we can return to the question formulated above. How many solutions has the
stationary kinetic equation (1.5), (4.1)? Notice that we simplified it to the linear equation

(

∂2

∂ω2
+

2

ω2

∂2

∂φ2

)

A = 0. (5.22)

In particulary, kinetic equation has anisotropic KZ solution

A =
1

2π

{

P + ω Q +
Rx

ω
cos φ

}

, (5.23)

where P and Rx are fluxes of energy and momentum at ω → ∞ and Q is the flux of wave
action directed to small wave numbers. In a general case, (5.23) is a nonlinear integral
equation, however in the diffusion approximation the KZ solution can be found in the
explicit form:

N(ω, φ) =
1

(2π H0)1/3

g4/3

ω5

(

P + ω Q +
Rx

ω
cos φ

)1/3

. (5.24)

By comparison with (4.35), (4.38) we easily find that in this case

cp = cq =
1

2(2π H0)1/3
= 0.223, H0 = 1.83.

This is exactly the arithmetic mean between the values of Kolmogorov constants given by
(3.31).

By multiplication of (5.24) to 2πω we get the general KZ spectrum in the diffusion
approximation:

F (ω) = 2.78
g4/3

ω4

(

P + ω Q +
Rx

ω
cos φ

)1/3

. (5.25)

We must be sure that in the isotropic case Rx = 0, expression

F (ω) = 2.78
g4/3

ω4
(P + ω Q)1/3 (5.26)

approximates the generic KZ spectrum with accuracy up to few percent.
If somehow we know the value of A(ω, φ) on the circle ω = ω0, we can solve the external

and internal Dirichlet boundary problem for equation (5.22) with boundary condition
A(ω, φ) < ∞ at ω → ∞. Suppose that

A(ω, φ) = A0(φ) = A0 +
A1

ω
cos φ +

∞
∑

n=2

An

(

ω0

ω

)

−1/2+
√

1/4+4n2

cos nφ. (5.27)

First two terms in (5.27) present the KZ spectrum with Q = 0, P = 2πAn, Rx = 2πω0 A1.
The next terms describe the fast stabilization of any arbitrary solution to the KZ spectrum
at ω/ω0 → ∞. The first additional term in (5.27) decays as (ω0/ω)3.53 cos 2φ.
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This stabilization to KZ spectrum is actually the ”angular spreading” of wind-driven
wave spectra that is usually observed in field experiments (see, for instance [12]). If Q = 0,
the general KZ solution (5.25) at ω → 0 is the following spectrum:

F (ω) → 2.78

ω4
g4/3 p1/3

(

1 +
1

3

Rx

P ω
cos φ + · · ·

)

. (5.28)

Similar results were predicted by Kontorovich and Kats [30] and Balk [31].
From (5.27) one can see that A(ω, φ) is parametrized by function of one variable, A0(φ).

In presence of flux of action Q from infinity one should add to (5.27) an additional term
Qω. Thus in a general case, a freedom for determination of A consists of the function
that has one variable and one constant. We silently assume that the mapping N → A is
uniquely inversible. This fact is not proven but it is very plausible.

6 Damping due to nonlinear interaction

How we must compare Snl and Sin?
In this Chapter we show that Snl is the leading term in the balance equation (1.11).

In fact, the forcing terms Sin and Sdis are not known well enough, thus it is reasonable to
accept the most simple models of both terms assuming that they are proportional to the
action spectrum:

Sin = γin(k) N(k), (6.1)

Sdis = −γdis(k) N(k). (6.2)

Hence
γ(k) = γin(k) − γdis(k). (6.3)

In reality γdis(k) depends dramatically on the overall steepness µ. So far, let us notice
that the balance kinetic equation (1.24) can be written in the form

Snl + γ(k) Nk = 0, (6.4)

and present the Snl term as
Snl = Fk − Γk Nk (6.5)

The definition of Γk and Fk are given by (2.5), (2.6).
The solution of stationary equation (6.4) is the following:

Nk =
Fk

Γk − γk

. (6.6)

The positive solution exists if Γk > γk. The term Γk can be treated as the nonlinear
damping that appear due to four-wave interaction. This damping has a very powerful
effect. A ”naive” dimensional consideration gives

Γk ' 4πg2

ωk

k10 N2
k , (6.7)
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however, this estimate works only if k ' kp; kp being the wave number of the spectral
maximum.

Let k � kp. Now for Γk one gets

Γk = 2πg2
∫

|Tkk1,kk3
|2 δ(ωk1

− ωk3
) Nk1

Nk3
dk1dk2. (6.8)

The main source of Γk is the interaction of long and short waves. To estimate integral (2.6)
more accurately, we assume that the spectrum of long waves is narrow in angle, N(k1, θ1) =

Ñ(k1) δ(θ1). Long waves propagate along the axis x and ~k is the wave vector of short wave
propagating in direction θ. For the coupling coefficient we must put Tkk1,k2,k3

' 2k2
1k cos θ.

Then
Γk = 8πg3/2 k2 cos2 θ

∫

∞

0
k

13/2
1 Ñ2(k1) dk1. (6.9)

Even for the most mildly decaying KZ spectrum, Nk ' k−23/6, the integrand behaves like
k
−7/6
1 and the integral diverges. For more steep KZ spectra the divergence is stronger.

Let us estimate Γk for the case of ”mature sea”, when the spectrum can be taken in
the form

Nk ' 3

2

E√
g

k3/2
p

k4
θ(k − kp). (6.10)

Here E is the total energy. By plugging (6.10) to (6.9) one gets equation

Γω = 36 πω

(

ω

ωp

)3

µ4
p cos2 θ, (6.11)

that includes a huge enhancing factor: 36π ' 113.04. For the very modest value of
steepness, µp ' 0.05, we get

Γω ' 7.06 · 10−4ω

(

ω

ωp

)3

cos2 θ. (6.12)

In the isotropic case, to find Γk for ω/ωp � 1 we need to perform simple integration
over angles that yields

∫ 2π

0

∫ 2π

0
T 2

θ1,θ2
dθ1 dθ2 =

5

2
(2π)2,

thus instead of (6.11) we get:

Γk = 5πg3/2k2
∫

∞

0
k

13/2
1 Ñ(k1)

2 dk1 (6.13)

or

Γω =
45π

2
g3/2ω

(

ω

ωp

)3

µ4
p. (6.14)
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Finally, assuming that

Nkp
' 3

2

E
√

gk
5/2
p

,

we get from (6.8) the following estimate for Γp = Γ|k=kp:

Γp ' 9πωpµ
4
p. (6.15)

Even in this case we have a pretty high enhancing factor: 9π ' 28.26. In fact in all known
models Γk surpasses γ̃k at least in order of magnitude even for these very smooth waves.

In the presence of peakedness
Γp ' Λ ωpµ

4
p. (6.16)

Here Λ ' 4πωp/δω is the enhancing factor due to peakedness. If Λ µ2
p ∼ 1, then Γp is

associated with the maximal growth of modulational instability for monochromatic wave:
Γp ' γmod ∼ ωpµ

2
p. If Λ ∼ 1/µ2

p, the nonlinearity becomes so strong that the weak-
turbulent statistical approach is not applicable. This is quite realistic situation. Suppose
that µp ' 0.11 and ωp/δω ' 5. Then Λ µ2

p ∼ 0.76 and the weak turbulent description
is hardly correct. In the situation of strong nonlinearity the wind-driven sea generates
freak waves (see [24, 25]). The very fact of their existence as a common phenomenon is an
implicit proof of Snl domination in the energy balance.

Notice that Γk diverges for KZ spectra. However, it does not hurt the spectra existence
because in the full kinetic equation the divergence in Γk is cancelled by divergence in Fk.
Indeed, if we consider the contribution of small wave-numbers in integral (2.5), we end up
with the following expression:

Fk = 2πg2 Nk

∫

|Tkk1,kk3
|2 δ(ωk1

− ωk3
) Nk1

Nk3
dk1dk3 ' Nk Γk. (6.17)

In negligence of γk, equation (4.1) is satisfied automatically.
The results obtained in this Chapter show that the four-wave nonlinear interaction

is a very strong effect. Strong turbulence of near-surface air boundary layer makes the
development of reliable theory of air-water interaction, including a well-justified analytical
calculation of γk, an extremely difficult task. Field and laboratory measurements of γk

are difficult either, and the scatter in determination of γk is of order of γk itself. Anyway,
comparison of calculated above Γk with experimental data on γk shows that Γk surpasses
γk at least in the order of magnitude. This fact is demonstrated on Figure 3, where
experimental data are taken from [26].

As a result, we can make the conclusion that Snl is the leading term in the balance
equation (1.11) and that the rear face of the spectrum is describes by solution of equation
(4.1), which has a rich family of solutions. In particulary, this equation describes the
angular spreading.

On Figure 4 we demonstrate that for the nonlinear interaction term Snl = Fk − Γk Nk

the magnitudes of constituents Fk and Γk Nk essentially exceed their difference. They are
one order higher than the magnitude of Snl!
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Figure 3: Comparison of experimental data for the wind-induced growth rate 2π γin(ω)/ω
taken from [26] and the damping due to four-wave interactions 2π Γ(ω)/ω, calculated for
narrow in angle spectrum at µ ' 0.05 using Eq. 6.11 (dashed line)
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Figure 4: Split of nonlinear interaction term Snl (central curve) into Fk (upper curve) and
Γk Nk (lower curve)
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The dominance of Snl was not apparent until now for two reasons. First, it is not
correct to compare Snl and Sin; instead one should compare Γk and γk. Second, the widely
accepted models for Sdis essentially overestimate dissipation due to white capping. As a
result, the dominance of Snl is masked. We offer an alternative model for Sdis, which will
be published in forthcoming article [27]. Preliminary results obtained in this direction were
reported on ICNAAM-2009, Crete, Rethimno, September 2009 [28].

Author is grateful to Vladimir Geogjaev and Sergei Badulin for permission to include
the results of numerical computations presented in Fig.1 and Fig. 4 to this talk. The
details of these simulations will be published soon.
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