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1.    INTRODUCTION 

 
The aim of a design process is to ensure that a 
structure can withstand all foreseen forces with an 
adequate margin. This is in most cases done by 
selecting loads and responses corresponding to a 
given annual exceedance probability, q, where q is 
taken to be a rather low number. Here we will 
restrict the discussion to wave induced loads and 
responses. Throughout this paper a value 
corresponding to an annual probability of being 
exceeded equal to q will be referred as a q-
probability value. For design against overload q is 
taken to be 10-2 for the basic design control (ULS). 
Additionally, some codes also require that 
accidental environmental loads and responses are 
considered, (ALS). For the ALS control q = 10-4. 
The design recipe accounts for the fact that 
uncertainties are associated with the estimated q-

probability loads/ -responses, qr . The design 

responses are therefore obtained by multiplying the 
q-probability responses by a rule defined partial 

safety factor, E . The capacity of a structure will 

also be associated with uncertainties. For the basic 
design control, the nominal capacity of a structural 
component is taken to be the 5%-value of the 
elastic component capacity, 

05.0,ec . Uncertainties in 

this quantity is accounted for by dividing it by a 
rule defined material factor, 

M . 

Restricting the assessment to wave induced loads, 
the requirement that must be fulfilled by a proper 
design is given by Eq. (1). It must be kept in mind 
that this is merely an illustration. In practical design  

 

 

work one will also have to account for the effect of 
permanent loads and variable functional loads.  
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 05.0,                               (1) 

For q = 10-2, typical values for steel structures are 
35.13.1 E  and 15.1M . For q=10-4, both 

E  

and M are typically taken to be 1.0. Furthermore, 

05.0,ec  is usually replaced by a higher capacity 

which accounts for the fact that the real capacity is 
larger than the elastic component capacity. Due to 
the reduced partial safety factors and the acceptance 
of larger utilization, ULS will in most cases govern 
structural design. An exception, however, is if the 
external load pattern changes abruptly in a 
worsening way for annual exceedance probabilities 
in the range 10-4 – 10-2. An example where such a 
scenario is likely to be the case will be major wave-
in-deck problems.  

The aim of this paper is to discuss uncertainties 
associated with 

qr  and we will restrict the 

assessment to a case with q = 10-2. 

2.     RESPONSE PREDICTION FOR DESIGN 
PURPOSES  

In order to predict response values being in 
agreement with rule requirements all sources of 
inherent randomness should be included, i.e. long 
term variability in sea state characteristics and the 
short term variability of the response extreme value 
given the weather characteristics.  
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2.1 GENERIC RESPONSE CASES 
 
Our aim is to predict an adequate estimate for a 
response quantity corresponding to a given annual 
exceedance probability, q. The basic random 
variable is the 30-min maximum response here 
denoted X30. It is assumed that the distribution 
function of X30 is reasonably well modelled by the 
Gumbel model, see e.g. Bury (1975): 
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Here we limit the problem to wave induced 
response. One could also include wind speed and 
current speed. The steps of the method will be the 
same 
 
For a practical problem the challenge is to 
determine the short term distribution, i.e. the 
parameters ( ) and ( ). For the illustrative 
purposes of this study, we will here consider a 
generic response problem. The location parameter 
is given by: 
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For a linear response problem, 1 , while for a 

quadratic problem, 2 . By selecting p >> t0, we 

will have a response problem that is almost 
independent of the spectral peak period no matter of 
r. By selecting p and t0 properly and use a relatively 
large value for r, a response problem sensitive to a 
period band around t0 is achieved.   is a measure 
of the variability around the mean 30-minute 
maximum. 1.0  is adopted in this paper.  

 
2.2 SHORT TERM DESCRIPTION OF 
RESPONSE 
 
We will assume that we have time histories of 
hurricane characteristics, hs and tp, for all 30-minute 
hurricane steps (assumed to be stationary) of all 
(M) hurricanes exceeding 6m during a 50-year 
period. For each of the M hurricanes occurring 
within the selected area, we can estimate ),( th  

and ),( th  for all 30-minute stationary steps of the 

hurricanes using Eqs. (3 and 4). 
  
The value of the location parameter represents the 

most probable largest 30-minute maximum 
response. If we could observe the actual response 
quantity during the hurricanes, we would observe 
that the actual 30-minute minute maxima where 
scattered around the calculated most probable 
largest values. This means that if we select the most 
probable maximum as the largest hurricane 
maximum response, we do remove a certain amount 
of inherent randomness, the short term variability, 
from the analysis. In order to include this variability 
in the response analysis, we generate a possible 
observation for each 30-minute stationary step of 
all hurricanes. This is done using Monte Carlo 
simulation, see e.g. Bury (1975). A random 
number, ui,j, between 0 and 1 is generated. By 
replacing ),|(|30

thxF
psTHX

 in Eq. (2) with ui,j and 

solve the resulting equation with respect to x, a 
possible realization for the 30-minute largest 
maximum of step no. j of storm no. i is achieved 
by: 
 

))ln(ln( ,,,, jijijiji ux     (5) 

 
An illustration of this process is shown for a 
particular hurricane in Fig. 1. The hurricane is one 
of the hurricanes of the base case 50-year generic 
hurricane data base (reference data base) discussed 
in a later chapter, see Table 1. It is seen that both 
the significant wave height and the spectral peak 
period follow an idealized time history. The 
difference between the most probable largest 30-
minute maximum response and the observed (here 
simulated) 30-minute maximum response is clearly 
seen. Of course by repeating this process, the 30-
minute maximum observations will change from 
simulation to simulation. This is illustrated by 
showing another simulation for the same storm in 
Fig. 2. 
 
We will denote the largest most probable 30-minute 
response of hurricane no. i by 

iy~ and the largest 

observed 30-minute value during the hurricane 

by iy . A priori, for an arbitrary hurricane, both 

these quantities will be random variables denoted 
by Y

~  and Y , respectively.  
 
Following the ideas of Tromans and Vanderschuren 
(1995), we will consider the ratio

iii yyv ~/ .We 

will assume that this ratio is a realization of a 
Gumbel distributed variable, V, which is assumed 
to be identically distributed for all hurricanes:  
 















 


G

G
V

v
vF




expexp)(   (6) 



 3

 

0 2 4 6 8 10 12 14 16 18

10

15

20

25

30

35

Most probable and observed 30-min. maximum response

Storm Duration [h]

H
s 

[m
],

 T
p 

[s
],

 R
es

po
ns

e 
[-

]

 

 

Y

Y
tilda

Hs

Tp

 
Fig. 1 Storm histories of hs, tp, (hs,tp) and one set 
of simulation of x30 for a particular hurricane. 
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Fig. 2  Storm histories of hs, tp, (hs,tp) and a new 
set of simulation of x30 for same hurricane as in Fig. 
2. 
 
By calculating this ratio for all available hurricanes, 

the mean, v , and standard deviation, Vs , can be 

calculated from the generated sample. Applying the 
moment principle, the Gumbel parameters can be 
estimated by, Bury (1975):  
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Using that  
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we have from Eq. (6): 
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This is the short term distribution of hurricane 
maximum response given the most probable largest 
hurricane maximum. 
 
2.3 LONG TERM ANALYSIS OF RESPONSE 
 
In order to obtain a marginal distribution for Y, the 
long term distribution, we need to establish a long 
term distribution for Y

~
. This can be done by fitting 

a probabilistic model to the observed most probable 
largest maxima for the M hurricanes, )~(~ yF

Y
. We 

will here assume that Y
~  can be reasonably well 

modelled by a 3-parameter Weibull distribution: 
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A reasonable choice regarding the lower threshold 
for the most probable hurricane response, 0

~y , will 

be made in view of the sample values. Thereafter 

W  and 
W will be estimated using the maximum 

likelihood method, see e.g. Bury (1975). This is 
done by a Matlab function, wblfit.  
 
As )~(~ yF

Y
 is available, the long term distribution of 

Y is given by:  
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The q- probability values are found by solving: 
 

1

)(1
n

q
yF qY  ,    (12) 

 
where q is target annual exceedance probability and 
n1 is the expected number of hurricanes per year 
(=M/50). 
 
2.4 APPROXIMATE ESTIMATION OF LONG 
TERM EXTREMES 
 
It is seen that the approach outlined above requires 
that the response analysis is done for a large 
number of sea states. This will be time consuming 
for a non-linear response problem where time 
domain simulations or model tests are required in 
order to determine the short term distributions.  
 
An interesting question is therefore if we instead of 
considering all 30-minute steps of all hurricanes 
rather can consider the 30-minute maximum 
response of the worst q-probability  30-minute  
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hurricane peak sea state. The sea state should be 
determined as the worst sea state (identified in view 
of the problem under consideration) along the q-
probability contour of hurricane peak significant 
wave height, hs,p, and the simultaneously occurring 
spectral peak period, tp,p. An example of q-
probability contour lines for hs,p and tp,p are shown 
in Fig. 3.  
 
A reasonable probabilistic model for the 30-minute 
largest response given the significant wave height 
and spectral peak period of the hurricane peak, hs,p 

and tp,p, is the Gumbel distribution shown in Eq. (2) 
with parameters given by Eqs. (3 and 4). When 
using this method for a real response case where the 
parameters, (hs,p, tp,p) and (hs,p, tp,p), are not a 
priori known, they must be estimated from data of 
the 30-minute maximum response obtained by time 
domain simulations or model test experiments. 
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Fig. 3  q-probability contour lines for hs,p and tp,p 

based on 50 years of hurricane “observations”. 
 
 
The contour line method is presented into more 
details in Winterstein et al. (1993) and Kleiven and 
Haver (2004) and Haver and Kleiven (2004). Some 
examples of application are found in e.g. Haver and 
Winterstein (2008) and Baarholm and Haver 
(2009). We have long experience with the method 
in a North Sea type of wave climate. There the 
target quantity is typically taken to be the 
distribution of the 3-hour maximum response for 
the worst sea state along the q-probability contour 
line of hs and tp. hs and tp are the characteristics for 
an arbitrary 3-hour sea state. The sample space 
consists of all possible 3-hour sea states.  
 
In Gulf of Mexico it is not convenient to consider 
an arbitrary 3-hour or 30-minute sea state due to 
the rather strong clustering of extreme sea states. 
Here it is more convenient to consider the largest 
hurricane response as the target quantity, Haring 

and Heideman (1978), Tromans and 
Vanderschuren (1995). The hurricane peak 
response will not necessarily occur during the 30-
minute hurricane peak sea state. In spite of this, we 
will here assume that a properly selected hurricane 
peak sea state will be adequate for predicting 
design response.  
 
We will establish q-probability contour lines for 
hs,p and tp,p from available hurricane data, see Fig. 
3. This will be discussed into more detail later. For 
a given response quantity, we will determine the 
worst sea state along the 10-2-probability contour. 
This sea state will be adopted as the ULS design 
sea state for this response quantity.  
 
The challenge by this approach is to select a proper 
percentile of the Gumbel distribution for the 30-
minute maximum response for the design sea state 
such that it becomes a good approximation to the 
“true” q-probability response obtained from Eq. 
(12). The assumption is that this percentile level 
should not be too dependent of the response 
quantity. This will be discussed later applying 
hurricane data qualitatively representing a 50-year 
period for a Gulf of Mexico site. 
 
 
2.5 NEEDED METOCEAN INFORMATION 
FOR ESTIMATING DESIGN RESPONSE 
 
The required metocean information for the two 
approaches outlined above are: 
 
 The exact approach requires the time histories 

of significant wave height and spectral peak 
period for all 30-minute steps (at least all 
important steps) above the selected hurricane 
threshold. 

 The approximate approach requires that the q-
probability contour lines for Hs,p and Tp,p are 
available.   

 
Both these subjects will be dealt with in the next 
chapter.    
 
 
3.   GENERIC 50-YEAR HURRICANE DATA 
BASE 
 
For the Gulf of Mexico good quality hindcast data 
is available for the period 1950 – 2005, Cooper and 
Stear ( 2006 ). These data are not available for this 
study and a generic data base covering 50 years are 
therefore constructed using Monte Carlo 
simulation. 
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3.1 SIMULATION MODEL 
 
The generic data base is developed as a part of a 
master thesis, Bergsvik (2009). The model is briefly 
described below: 
 
Hurricane occurrences: 
Hurricane occurrence within the hurricane season is 
assumed to be described by a Poisson process with 
a rate,  .  is varying over the hurricane season, 

July 1st - November 30th. The adopted rates (= 
expected number of hurricanes per day) are:  
0.00024 for July 1st  – August 15th, 0.008 for 
August 16th  – September 30th , 0.003 for October 
1st – October 31st. and, finally, 0.00024 for 
November 1st  – November 30th.  
 
A consequence of the Poisson process assumption 
is that the time until next occurring hurricane 
follows an exponential distribution with the rate,  , 

as the only parameter: 
  

t
T etF  1)(     (13) 

 
Eq. (13) is used for simulating time until next 
hurricane. The simulation scheme which is repeated 
with new random seeds for every year is briefly 
described by:  
 
Starting July 1st a realization of the waiting time 
[days] until next hurricane is obtained by Monte 
Carlo simulation using the rate valid for the first 
part of the season, July 1st – August 15th. If the 
waiting time corresponds to a day after August 15th, 
no hurricanes occur for this part of the hurricane 
season for this year. If the simulated number, t, 
corresponds to a day before August 15th , a 
hurricane is recorded as starting at day t after July 
1st. Time until next hurricane is found by generating 
a new realization from Eq. (13) using the same rate. 
In this connection waiting time starts running from 
time of previous hurricane + 2 days. If the new 
realization brings us beyond August 15th, there are 
no more hurricanes for the first part of the season 
for this year. If it corresponds to a day earlier than 
August 15th, a second hurricane is identified for this 
part of season this year. This process goes on until 
one ends up after August 15th. 
 
As we are finished with the first part of the 
hurricane season, rate is updated and the procedure 
is repeated until the second part of the hurricane 
season for this year is covered, i.e. until the 
simulated waiting time yields an event after 
September 30th. Then rate is again updated, the 
waiting time starts running from October 1st and 

this process goes on until the third part of the 
season is covered. Rate is adjusted from November 
1st and the simulation process will be performed 
until we end up with an event after December 1st. 
 
As we have reached December, we jump to July 1st 
and perform the same process for a new year. In 
this way, a generic 50-year data base of hurricane 
occurrences is obtained by repeating this for 50 
years. 
 
This data base can of course not be used for actual 
design work, but it is convenient for the purpose of 
indicating the effect of a limited amount of data. It 
is rather easy to generate data for many 50-year 
periods.  
 
Peak hurricane significant wave height: 
Given a hurricane occurrence, the peak significant 
wave height is simulated from a shifted exponential 
model, see Eq. (14). The parameter is selected such 
that a reasonable level for the underlying 10-2 – 
probability hurricane peak is obtained. 
  

2;
6
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This model may be too simple for practical work, 
but it is selected for our illustrative study. 
 
Spectral peak period at maximum hurricane 
significant wave height: 
The simultaneous spectral peak period is thereafter 
simulated from a log-normal distribution with 
parameters being a function of the maximum 
significant wave height: 
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21
ahaa      (16) 

 hbbb 321
2 exp       (17) 

 
The parameters used in the simulations,  

41.0,35.0,71.1 321  aaa  & 31.0,12.0,005.0 321  bbb , 

are taken from data for the North Sea and will not 
necessarily be very accurate for hurricane 
conditions in Gulf of Mexico. They are, however, 
considered of sufficient accuracy for the present 
investigation. 
 
Duration of hurricane: 
The duration of the event hs > 6m is simulated by 
assuming that the duration follows a log-normal 
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distribution with parameters given as functions of 
peak significant wave height: 
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)6(16.074.1  h    (19) 

 )6(17.0exp2  h    (20) 

 
Time history of hurricane characteristics: 
As the hurricane peak significant wave height and 
spectral peak period together with the duration 
above 6m is known for all hurricane occurrences, a 
full storm history of 30-minute sea states is 
obtained assuming a symmetric triangular history 
for the significant wave height, see Fig. 1.  
 
For the spectral peak period a slightly skewed 
triangular history, see Fig. 1, is obtained by 
adopting a spectral peak period at hurricane start, 
i.e. as hs crosses the 6m threshold, given by 

175.0)0( ,  ppp tt and a spectral peak period at 

the end of the storm history equal 
to 175.0)( ,  ppp tdt . Linear interpolation is used 

between the peak period at storm peak and at start 
and end, respectively. An example of hurricane 
histories for hs and tp is shown in Fig. 1.   
 
 
3.2 CHARACTERISTICS FOR THE BASE CASE 
50-YEAR HURRICANE DATA BASE 
 
Some characteristics of the simulated hurricane 
occurrences during a 50-year period are given in 
Table 1. This hurricane data base will in the 
following be adopted as the reference data base. It 
is seen that the reference data base includes 32 
hurricanes above 6m ranging from a peak 
significant wave height from 6.06m to 14.84m. Hs-
max (= hs,p) is the peak significant wave height of 
the hurricane. Tp_max (= tp,p) is the peak period 
corresponding to Hs_max, and duration is the 
duration of significant wave height above a 
threshold of 6m.  
 
 
4 EXTREME SEA STATE CHARACTERISTICS 
 
The base case 50-year data base includes 32 
hurricanes, i.e. we have 32 simultaneous 
observations of the peak significant wave height 
and spectral peak period at hurricane peak sea 
severity. Based on these observations, adequate 

extremes storm characteristics and, later, response 
extremes are to be predicted. 
 
Table 1 Some hurricane characteristics of the 
generated 50-year hurricane data base.  

 
 
 
4.1 q-PROBABILITY HURRICANE PEAK 
SIGNIFICANT WAVE HEIGHT  
 
The hurricane peak, hs,p, minus the threshold (6m) 
raised to a certain power, k, is assumed to follow an 
exponential model, see Eq. (22). The moment 
estimate for the parameter,  , is determined from 

observations by: 
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M is the number of hurricanes and hi is the 
observed hurricane peak significant wave heights.  
 
For illustrative purposes, 1k  is adopted in this 

subchapter. Under this assumption m15.2ˆ   is 

found. The sample distribution and the fitted 
exponential model are shown in Fig. 4. A 
reasonable fit is obtained.  
 
The probability levels corresponding to annual 
exceedance probabilities of 10-1, 10-2, 10-3 and 10-4 
are also shown in Fig. 4. The probability levels are 
found by using Eq. (12) with n1 = 32/50 = 0.64. It is 
seen that the corresponding extremes are: 9.8m, 
14.9m, 20.0m and 24.8m. One should not focus too 
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much on the absolute values. Our concern is rather 
the uncertainties associated with the extremes when 
they are to be based from data of a 50-year period. 
 
The observation of an acceptable fit using 1k  

should be expected since the generic data base for 
the hurricane peak significant wave height is 
generated using an exponential distribution. For a 
real hurricane data base we will not know the 
underlying type of distribution. Due to this we will 
in the major part of this work skip the assumption 
of 1k .  

 
Sample and fitted distribution for hurricane significant wave 
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Fig. 4  Sample distribution and fitted exponential 
model for Hs,p. 
 
 
4.2 q-PROBABILITY CONTOUR LINES FOR 
HURRICANE PEAK CHARACTERISTICS 
 
In order to determine the contour lines, we need the 
joint probability distribution of Hs,p and Tp,p, 

),(
,,

thf
ppps TH

. In order to estimate this distribution 

from data, it is convenient to write: 
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pspppsppps HTHTH    (22) 

  
For the marginal distribution of Hs,p we will assume 
that the data can be fitted to a 3-parameter Weibull 
model where the location parameter is taken to be 
6m, i.e.: 

;
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The parameters are fitted by determining k such 
that    k

ps
k

ps HSTDHE )6()6( ,,  , which is the case 

if k
psH )6( ,  is exponential distributed. Thereafter   

is estimated by Eq. (21). The coefficients estimated 
from the available hurricane samples for the 
marginal distribution of Hs,p , Eq. (23), and the 
conditional distribution of Tp,p, Eqs. (16 and 17) are 
given in Table 8 (at end of paper).   

As the joint distribution is available, the contour 
lines are estimated as indicated in e.g. Kleiven and 
Haver (2004). The contour lines obtained for the 
reference data base are shown in Fig. 3. It should be 
kept in mind that the q-probability contour 
corresponds to a probability of exceedance per 
hurricane equal to q/n1.   
 
5 UNCERTAINTIES ASSOCIATED WITH THE 
PREDICTED EXTREMES 
 
When estimating hurricane extremes of the 
significant wave height, the fitted model will be 
rather sensitive to the largest observed hurricanes. 
The estimated extremes will  also be effected by the 
number of hurricanes observed during the 50-year 
period since this will define the target probability 
levels. The number of hurricanes occurring for the 
base case 50-year period is larger than we would 
expect during a 50-year period of the generic 
hurricane model. However, if this was our available 
observations, the best we can assume is that a 
typical 50-year period will include about 32 
hurricanes.  
 
The variability in number of hurricanes per unit 
time can easily be accounted for. By focusing on 
the distribution of the annual largest significant 
wave height instead of the distribution of hurricane 
peak significant wave height, the effects of 
randomness in annual number of hurricanes can be 
baked into the analysis as shown in Haring and 
Heideman (1978).  
 
5.1 ALEATORY UNCERTAINTY 
 
From our fitted model for the hurricane peak 
significant wave height in Ch. 4.1, we can estimate 
the value exceeded by an annual probability of 10-2. 
The return period, i.e. average time between 
occurrences of exceeding this value, will equal 100 
years and this quantity is therefore frequently 
referred to as the 100-year value. It should be noted 
that the return period is an average measure, i.e. the 
time period between adjacent occurrences could be 
very different from the return period. Accordingly, 
the largest value actually observed in a 100-year 
period will be a random variable itself. 
 
Assuming that the fitted exponential model is the 
true model, we can estimate the variability of the 
largest hurricane peak significant wave height 
observed during a 100-year period. The 100-year 
hurricane peak significant wave height, )100(

, psH , is 

the largest out of 64 hurricanes, i.e. its distribution 
function reads: 



 8

 
64

ˆ
exp1)()100(

, 
















h

hF
psH

;   (24) 

  
where 15.2ˆ  . This distribution function is shown 

in Fig. 5. It is seen that the 80% range for the 
variability of )100(

, psH  is given by 13m – 20m.  

Distribution function of largest storm peak significant 
wave height in 100 years
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Fig. 5  Distribution function of the largest hurricane 
peak observed in a 100-year period.    
 
There is not much that can be done with this 
variability. If one is concerned about robustness 
against this type of uncertainty one should check 
the structure against extremes corresponding to say 
10-3 or 10-4 annual exceedance probabilities. This 
will be the same as selecting the 90-percentile or 
99-percentile, respectively, in Fig. 5. 
 
 
5.2 EPISTEMIC UNCERTAINTY 
 
The variability discussed above is inherent to the 
problem. This type of variability is referred to as 
alatory uncertainties or Type I uncertainties. 
However, there are also epistemic (Type II) 
uncertainties associated with the predicted 
extremes. These uncertainties will be addressed 
later on by generating many 50-year hurricane data 
bases. Here we will consider the reference 50-year 
data base as our sole available information about 
the wave conditions. The Type II or epistemic 
variability related to a limited amount of data can 
be indicated either by classical bootstrapping 
(generating new samples of size 32 by drawing with 
replacement from the original sample), see e.g. 
Efron and Tibshirani (1994), or by a parametric 
bootstrapping. Here we will select the latter 
approach. 
 
A probabilistic model is fitted to the original 
sample. Assuming that the fitted model for the 
hurricane peak significant wave height is the true 
model, we can generate a number of equally valid 

samples of size 32 using Monte Carlo simulation. 
In principle, each of these samples could just as 
well have been observed as the one we did observe. 
 
The sample distributions are compared with the true 
distribution in Fig. 6. Exponential models are fitted 
to the various simulated samples and are shown in 
Fig. 7. It is seen that the sample distributions show 
a considerable variation relative to the underlying 
distribution. From the fitted model it is clear that 
the estimated 10-2-annual probability hurricane peak 
significant wave height can deviate significantly 
from the underlying true figure. The 10-2- annual 
probability of exceedance, 1/64, corresponds to 
4.16 in the exponential scale used in Figs. 6 and 7.   
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Fig. 6 Sample distribution of 20 simulated samples 
compared to underlying distribution 
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Fig. 7 Fitted exponential model to the 20 simulated 
samples (colour code is not the same as for Fig. 6) 
 
Estimating the 10-2 – probability value from the 20 
simulated samples give estimates from 12.8m to 
21.7m. It is seen from Fig. 7 (and Fig. 6) that one of 
the simulated samples stands out as not a typical 
member of the 20 simulated samples. However, we 
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will include the sample in this illustration of 
epistemic uncertainties. Assuming the variability in 
the predicted 10-2 – value to be close to Gaussian, a 
80% band is estimated to be 12.6m – 17.7m. This 
range is slightly narrower than the aleatory 
variability discussed above.  
 
A priori, we will not know which sample “mother 
nature” has given us relative to some underlying 
distribution. We must therefore conclude that based 
on 32 observations and an exponential model, we 
can not exclude that our fitted distribution function 
yields a 10-2 – value about 20% too low or about 
10-15% too high. 
 
 In contrast to the aleatory variability, this type of 
uncertainty can be reduced by including more data 
e.g. obtained by covering a longer time period with 
hindcast data. But with a typical duration of about 
50 years, the epistemic uncertainty related to the 
estimated 10-2 – probability hurricane peak 
significant wave height is considerable keeping in 
mind that a partial load factor of 1.35 (API) is 
meant to cover all uncertainties (except gross 
errors) associated with the characteristic design 
response.  
 
In concluding this chapter, we will point out that if 
50 years of hindcast data are available for the target 
area, a considerable epistemic uncertainty will be 
baked into our conclusions. Here we have 
illustrated this by assuming that the 50-year period 
includes always 32 storms. As will be shown below 
this will not be the case. There will be a 
considerable variability in the number of hurricanes 
exceeding 6m significant wave height during a 50-
year period. The typical number is lower than 32. 
Meaning our indicated uncertainty is not 
conservative within the framework of the present 
hurricane simulation model. 
 
5.3 VARIABILITY BETWEEN DIFFERENT 50-
YEAR HURRICANE DATA BASES 
 
In the previous section we estimated the uncertainty 
involved if we merely have one 50-year data period 
available and would like to make the best out of it. 
The advantage of a generic model for generating 
50-year of hurricane occurrences is that we can 
generate as many 50 year periods as we would like. 
Here we have generated 20 data bases of duration 
50 years in addition to the reference data base. 
 
For each of these 50-year periods, we have 
estimated the 10-2 – annual probability hurricane 
peak significant wave height. The various fitted 
Weibull distributions are shown in Fig. 8. The 

range of the 10-2 – annual probability level is also 
indicated. The reason for a range of target 
probabilities per hurricane is the variation in 
number of hurricanes for the various 50-year 
samples.  
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Fig. 8 Distribution functions for Hs,p for the twenty 
50-year data bases.  
 
 
Estimated 10-2- annual probability hurricane peak 
significant wave heights are shown in Table 2. An 
80% band based on these estimates is given by  
9.7m – 17.3m. The width of this range is slightly 
larger than the corresponding range obtained when 
we considered merely the reference 50-year period 
and kept the number of hurricanes fixed. 
 
 
Table 2  Estimated 10-2 – annual probability values 
for the hurricane peak significant wave height for 
the 20 additional data bases.  

hs,p,0.01 tp,p| hs,p,0.01 No. of 

(m) (s) hurricanes

Reference 14.3 15.8 32

1 16.5 15.4 19

2 14.0 16.2 23

3 14.2 16.4 22

4 13.8 15.8 22

5 19.9 17.2 23

6 12.8 15.0 22

7 12.1 14.0 20

8 10.9 14.3 20

9 12.7 14.9 24

10 10.3 13.1 17

11 18.6 16.7 19

12 9.8 12.7 12

13 10.1 13.1 25

14 11.1 13.4 18

15 14.5 16.1 24

16 11.1 14.0 21

17 16.4 16.7 30

18 14.3 15.5 24

19 16.6 16.6 25

20 9.7 14.3 22

Mean (#1 ‐ #20)  13.5 15.1 21.6

St. dev.  (#1 ‐ #20)  3.0 1.4 3.7

50‐year database [#]

 



 10

We have also generated 10-2 – probability contour 
lines for the hurricane peak characteristics, hs,p and 
tp,p, for each 50-year period. The various contours 
are shown in Fig. 9. It is clear that for the generic 
model there will be a considerable variability from 
one 50-year period to another 50-year period.  
 
In the next chapter we will indicate the response 
sensitivity to the observed variability both for the 
an exact response prediction method and the 
approximate response method.  
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Fig. 9 10-2 – annual probability contour lines for hs,p 

and tp,p based on each of the twenty 50-year data 
bases.  
 
6 FULL LONG TERM RESPONSE ANALYSES 
 
6.1 CASE 1: LINEAR PROBLEM INSENSITIVE 
TO SPECTRAL PEAK PERIOD 
 
With reference to Eqs. (3 and 4), this case is 
characterized by the following parameter values: 

1 , r=1, t0 =12s, p = 400 and 1.0 . The 

analysis is carried out by establishing a distribution 
function for the hurricane maximum response given 
the most probable largest response, Eq. (9). 
Thereafter a 3-parameter Weibull distribution is 
fitted to the most probable response maxima for all 
hurricanes, Eq. (10). The latter distribution 
measures the long term variability as reflected by 
the hurricanes that has occurred during the actual 
50-year period. 
 
For the reference data period, the following 
extremes are estimated for annual exceedance 
probabilities of 10-1, 10-2, 10-3 and 10-4, 
respectively:  24.0, 34.4, 44.4 and 54.5, see also 
Table 3. Our interest is here to see the variability in 
these extremes when estimated for 20 different 
realizations of 50 years of hurricanes. The results 
are shown in Table 3. 

It is seen that a considerable variability is observed 
from 50-year period to 50-year period. It is seen 
from Table 3 that 1.35 (partial safety factor) times 
the 10-2 – annual probability value obtained for the 
reference period (34.4) is slightly exceeded by the 
largest estimated 10-2-probability response of the 20 
additional 50-year data samples.  
 
It is, furthermore, seen that a couple of 50-year 
periods stands out. This can also be seen from 
Table 2 presenting the estimated 10-2- probability 
hurricane peak significant wave height. These 50-
year periods may in some sense be more severe 
than expected during a 1000-year period and may 
amplify the scatter. However, it is also a good 
illustration of the inherent variability of the 
observed largest within a given time period.  
 
It may well be that the results of these 50-periods 
are too conservative since there are no physical 
limitations enforced by the simulation procedure 
used herein. In particular, this is worthwhile to keep 
in mind since an exponential distribution is used as 
probabilistic model for generating the hurricane 
peak significant wave height. This probability 
distribution has a rather fat upper tail. 
 
Table 3 Response extremes for Case 1. 
50‐year database [#] Response with return period [years] Number of storms

10.0 100.0 1000.0 10000.0 in 50 years

Reference case 24.0 34.4 44.4 54.5 32

1 22.5 39.5 58.6 79.3 19

2 23.3 34.6 45.8 57.1 23

3 22.9 40.4 60.8 83.6 22

4 22.3 34.4 46.8 59.6 22

5 24.1 46.1 72.9 102.1 23

6 21.1 33.7 49.1 66.7 22

7 23.0 32.6 41.4 50.3 20

8 20.2 28.5 36.7 45.3 20

9 22.1 34.0 47.0 61.1 24

10 20.0 28.5 36.5 44.7 17

11 23.9 47.3 75.4 106.2 19

12 17.9 28.3 40.0 53.1 12

13 21.6 29.2 36.3 43.5 25

14 22.5 32.7 42.5 52.6 18

15 22.2 35.4 51.0 68.6 24

16 23.4 33.3 42.6 52.3 21

17 25.9 41.6 58.7 77.3 30

18 24.4 36.6 48.4 60.2 24

19 23.0 38.2 55.4 74.0 25

20 19.7 26.3 32.5 39.0 22

Mean 22.3 35.1 48.9 63.8 21.6

Standard deviation 1.9 5.8 11.7 18.6 3.7

C.o.V 0.08 0.17 0.24 0.29 0.17

Max 25.9 47.3 75.4 106.2 30.0

Min 17.9 26.3 32.5 39.0 12.0  
 
 
6.2 CASE 1: LINEAR PROBLEM SENSITIVE TO 
SPECTRAL PEAK PERIOD 
 
The characteristics for Case 2 are with reference to 
Eqs. (3 and 4) given by: 1 , r=16, t0 =12, p = 64 

and 1.0 . It is still a linear response case, 1 , 

but as a consequence of the changes of r and p, this 
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case becomes more sensitive to sea states with a 
spectral peak period around 12s. The results of this 
case are given in Table 4. 
 
A certain scatter in extremes are observed, but the 
scatter for 10-2 -,  10-3 - and 10-4 – annual extremes 
are considerably reduced as compared to Case 1. 
This is most probably  a result that there is less 
variability in the significant wave height level 
corresponding to a spectral peak period of about 
12s.  
 
For this case 1.35 x y0.01(reference data base) is not 
exceeded by the predicted y0.01 value for any of the 
additional 50-year data bases, but the margin is not 
large.  
 
Table 4 Response extremes for Case 2. 
50‐year database [#] Response with return period [years] Number of storms

10 100 1000 10000

Reference period 21.9 28.8 35.1 41.3 32

1 20.6 32.2 43.1 54.0 19

2 20.5 28.0 34.4 40.6 23

3 20.2 27.7 34.4 41.2 22

4 21.0 31.9 42.6 53.7 22

5 21.7 32.1 41.2 50.2 23

6 19.2 26.7 33.3 40.0 22

7 20.0 29.5 38.8 48.6 20

8 18.1 24.3 29.8 35.4 20

9 20.6 29.5 37.4 45.5 24

10 19.3 26.7 32.9 38.7 17

11 21.7 32.3 42.4 52.9 19

12 16.4 23.7 30.6 37.4 12

13 20.9 28.1 34.7 41.2 25

14 20.7 29.9 37.9 45.7 18

15 19.1 26.2 32.4 38.6 24

16 21.0 28.2 34.6 40.9 21

17 23.5 34.2 44.5 55.2 30

18 21.8 29.6 36.2 42.5 24

19 21.9 32.4 42.2 52.2 25

20 18.6 24.8 30.7 36.7 22

Mean 20.3 28.9 36.7 44.6 21.6

Standard deviation 1.6 3.0 4.6 6.5 3.7

C. o. V. 0.08 0.10 0.13 0.15 0.17

Max 23.5 34.2 44.5 55.2 30.0

Min 16.4 23.7 29.8 35.4 12.0  
 
 
6.3 CASE 1: NON-LINEAR PROBLEM 
INSENSITIVE TO SPECTRAL PEAK PERIOD 
 
The characteristics of this case is similar to Case 1 
except that 2 , i.e. there is a quadratic relation 

between response and waves. The response analysis 
is done as for Case 1. The results are summarized in 
Table 5. 
  
Results express the same qualitative tendencies. 
The major difference is that the non-linearity causes 
the epistemic variability in the predicted extremes 
to increase considerably.  
 
The message is that if one deals with a quadratic 
response case, the uncertainty in the predicted 10-2 
– annual probability is rather large. Our reference 
data period gave a 10-2 – probability response of 

571.4, which after being multiplied by 1.35 gave a 
design response of 771.4. However, looking at the 
20 other 50-year data periods obtained using the 
same model as the used to produce the reference 
period, the estimated 10-2 – probability value varies 
from 323.5 to 1050.8, see Table 5. This means that 
the design response is considerably exceeded by the 
10-2 – probability predicted for the worst 50-year 
period.   
 
Although one should keep in mind that the data 
bases are obtained using a simplified simulation 
model involving no physics that can limit spread, 
the results are of some concern keeping in mind 
that the partial safety factor of 1.35 is to account for 
all uncertainties in the load predictions.  
 
Table 5 Response extremes for Case 3. 
50‐year database [#] Response with return period [years] Number of storms

10 100 1000 10000

Generic 296.4 571.4 876.6 1212.0 32

1 250.2 780.3 1594.8 2693.6 19

2 255.0 553.6 900.7 1290.3 23

3 247.3 622.3 1101.0 1670.2 22

4 251.6 625.0 1122.9 1735.9 22

5 275.3 1050.8 2394.4 4223.6 23

6 221.9 517.9 935.5 1468.8 22

7 230.5 460.9 717.5 1002.2 20

8 203.6 374.5 560.9 766.5 20

9 213.1 443.4 717.4 1031.6 24

10 190.7 365.0 556.4 769.6 17

11 262.9 855.1 1704.5 2771.1 19

12 158.7 365.7 638.8 976.8 12

13 211.7 358.4 511.6 676.6 25

14 219.8 426.4 646.4 883.8 18

15 230.1 558.3 1008.0 1559.7 24

16 241.1 452.2 675.5 916.5 21

17 316.1 784.6 1411.9 2185.2 30

18 287.5 623.4 1017.2 1470.0 24

19 271.3 722.6 1358.0 2158.4 25

20 186.1 323.5 484.7 672.4 22

Mean  236.2 563.2 1002.9 1546.1 21.6

Standard deviation 37.5 195.6 489.1 898.8 3.7

C.o.V 0.16 0.35 0.49 0.58 0.17

Max 316.1 1050.8 2394.4 4223.6 30

Min 158.7 323.5 484.7 672.4 12  
 
6.4 CASE 1: NON-LINEAR PROBLEM 
SENSITIVE TO SPECTRAL PEAK PERIOD 
 
Case 4 is the same as Case 2 except for that is a 
quadratic response problem. Results are given by 
Table 6. The variability is considerably increased as 
compared with the linear period sensitive case, 
Case 2, but the variability is reduced when 
compared to the non-linear case with no significant 
period sensitivity, Case 3.  
 
The reference period suggest a 10-2 – annual 
probability value of 464.1, while the 20 50-year 
data bases suggest values from 238.7 to 669.2. The 
upper estimate exceeds 1.35 x 464.1 = 626.5. Again 
the results clearly illustrate the importance of 
epistemic uncertainties for response predictions, 
because here we merely include parts of all 
epistemic uncertainties. 
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Table 6  Response extremes for Case 4. 
50‐year database [#] Response with return period [years] Number of storms

10 100 1000 10000

Generic 253.9 464.1 695.0 951.5 32

1 239.4 625.5 1128.4 1742.3 19

2 223.3 412.6 601.5 802.3 23

3 214.9 413.7 620.0 839.5 22

4 213.7 418.9 639.2 881.6 22

5 268.6 669.2 1157.0 1731.9 23

6 183.5 354.8 534.7 727.6 22

7 212.0 421.4 656.3 918.4 20

8 186.0 335.1 492.3 660.8 20

9 205.6 373.7 542.1 721.8 24

10 183.7 357.0 540.6 743.5 17

11 228.4 582.5 1020.5 1529.4 19

12 130.3 293.5 511.9 775.0 12

13 202.0 342.0 483.6 634.4 25

14 175.9 359.2 561.1 782.1 18

15 202.1 389.2 593.1 817.2 24

16 213.9 402.6 610.0 842.2 21

17 271.6 535.2 824.6 1148.7 30

18 254.0 490.9 747.4 1030.9 24

19 239.3 532.2 866.0 1239.4 25

20 157.5 238.7 316.8 397.7 22

Mean  210.3 427.4 672.4 948.3 21.6

Standard deviation 35.4 112.0 221.9 360.2 3.7

C.o.V 0.17 0.26 0.33 0.38 0.17

Max 271.6 669.2 1157.0 1742.3 30.0

Min 130.3 238.7 316.8 397.7 12.0  
 
 
7 APPROXIMATE ESTIMATION OF q-
PROBABILITY RESPONSE 
 
7.1 NEGLECTING THE INHERENT 
RANDOMNESS OF HURRICANE MAXIMUM 
RESPONSE 
 
If the variability of the hurricane maximum 
response given the most probable maximum 
response is very small, the q-probability response 
can be estimated by merely considering the long 
term distribution of the most probable largest 
hurricane response, Y

~
, see Eq. (10). 

  
The 10-2 – annual probability values for the most 

probable largest hurricane response, 01.0
~y , are 

shown in Table 7 (last page) for all response cases 
and all available generic 50-year data bases.  The 

10-2 – annual probability response, 01.0y , is also 

shown for all cases in the same table. It is seen that 
the 10-2 annual probability response is considerably 
underestimated by neglecting the short term 
variability. For the linear cases, the effect of short 
term variability is an increase of about 25-30%, 
while for the quadratic response case the effect is 
50-60%.  
 
The effects indicated by these results are much 
larger than expected a priori, and the analyses will 
be further verified in the future.  For a Northern 
North Sea climate our experience is that the short 
term variability increases the 10-2-probability 
extremes by 10-15% for linear response cases. The 

reason for this may be that 1.0 is too large for a 

linear response system.  It can also be that the short 
term variability is more important in a storm 
extreme formulation instead of a 3-hour extreme 
value formulation.  
 
 
7.2 ESTIMATING EXTREMES USING THE 
CONTOUR LINE METHOD 
 
Background 
The full long term analysis is time consuming. The 
most probable 30-minute maximum response must 
be calculated for all important 30-minute steps of 
the hurricane. This must also be done for all 
hurricanes of the 50-year period. From the 
maximum most probable largest response for each 
storm, we have to fit a probabilistic model 
reflecting the long term variability of the most 
probable largest hurricane response. This 
distribution ensures that we can account for non-
observed events in our long term analysis. This is 
important if we are looking for extremes 
corresponding to a return period much longer than 
the time period covered by the available sample. 
 
We must also determine the distribution function 
for the largest hurricane response given the most 
probable largest response of the hurricane. This also 
needs a number of response analyses.  
 
It would be convenient if we could estimate a q-
probability response value of reasonable accuracy 
directly from a limited set of environmental 
characteristics. 
 
The environmental contour method 
Here we will consider hurricane peak significant 
wave height and the associated spectral peak period 
as our primary weather characteristics. From these 
we have established q-probability contour lines, see 
Figs. 3 and 9. All combinations along the q-
probability contour represent possible q- probability 
combinations of hurricane peak significant wave 
height and the associated spectral peak period. In 
the following we will merely consider the case 
q=10-2.   
 
Let us assume that we for a particular response case 
determine the most unfavourable combination of 
hurricane peak significant wave height and 
associated spectral peak period along the 10-2 – 
probability contour line. Let us furthermore assume 
that the 30-minute maximum response is 
deterministically given by the hurricane peak 
significant wave height and the associated spectral 



 13

peak period, i.e. the extreme value distribution is 
more or less a Dirac delta function. We can then 
calculate the maximum 30-minute response for all 
sea states (30 minutes duration) along the 10-2-
probability contour. All of these will correspond to 
an annual exceedance probability of q. The largest 
value will occur for the most unfavourable sea state 
along the contour. The value obtained for the worst 
sea state along the contour will only occur once per 
100 years, while the values obtained for the other 
sea states along the contour will occur more 
frequently. Accordingly, provided we can neglect 
the variability of the 30-minute maximum value, 
this will be the 10-2-probability response.  
 
In practise we can not neglect the short term 
variability. This is clearly indicated by the results of 
Ch. 7.1. However, if we in spite of this will use the 
worst sea state along the 10-2-probability contour as 
our short term design sea state, what will we have 
to do in order to obtain a meaningful estimate of the 
underlying 10-2 – probability response? 
 
When we neglect the short term variability we will 
remove variability from the analysis and this will 
result in an underestimation of our target extremes. 
The extent of underestimation will depend on the 
relative importance of short term variability versus 
the long term variability handled by the selection of 
the 10-2 – probability contour of the wave climate 
characteristics hs,p and tp,p. A priori, we will 
therefore expect that we have to select a percentile 
of the upper tail (at least it must be larger than the 
median) in order to match the estimate obtained by 
the long term analysis.  
 
Experiences from North Sea applications suggest a 
certain similarity among most response problems, 
see e.g. Baarholm and Haver (2009). It is often 
recommended to adopt 0.90-probability value of the 
3-hour extreme value as a reasonable estimate for 
the long term extreme value, see e.g. 
recommendation in Norsok (2007).  
 
Application of method to the generic data 
We will investigate which percentile could be 
useful for Gulf of Mexico applications by 
investigating which percentile,100, we need to use 
in order to match the 10-2- response obtained from 
the long term analysis with the 100-percentile 
value of the worst 30-minute sea state along the 10-2 
– probability contours. Analysis will be done for 
the reference data base and the 20 additional 
simulated data bases for all 4 response cases. 
 

 The 10-2-probability as obtained from the long term 

analyses, 01.0y , and the percentile,  , needed to be 

used in order to match this estimate by the contour 
method are shown for all response cases in Table 7. 
It is seen that for all response cases, the variation in 
the proper percentile vary at most from about 0.8 to 
0.99 from one 50-year period to another 50-year 
period. The mean value for the various response 
cases vary from 0.91 – 0.94. This variation is most 
probably negligible in view of all other 
uncertainties.  
 
The scatter in the estimated probability level 
matching the 10-2 – probability value from the long 
term analysis is seen to be rather small. This 
investigation therefore suggests that the present 
implementation of the contour method may be a 
useful approach for estimating extremes for design 
– in particular for early phase considerations. A 
recommendation could be to recommend the 92.5-
percentile as a proper estimate for the 10-2- annual 
probability response. If one would like to be 
slightly more robust one could select the 95-
percentile.   
 
From the reference 50-year period the long term 
estimates for the 10-2- probability response reads 
34.4, 28.8, 571 and 464, respectively, for the 4 
response cases, see Table 7. Adopting the 92.5 – 
percentile as the target short term characteristic, the 
corresponding values becomes: 35.9, 30.6, 617 and 
479. These estimates are 3-8% conservative as 
compared to the long term results. Using the 95-
percentile one finds: 37.1, 31.6, 651 and 505. The 
overestimation as compared to the long term results 
is now from 8 to 14%. 
 
The best percentile level is shown versus data base 
severity in Fig. 10. Data base severity is in this 
connection measured by the predicted 10-2- annual 
probability hurricane peak significant wave height. 
For the period insensitive cases, the percentile level 
decrease with increasing severity. For period 
insensitive case where the critical period is different 
from the mode of the contours, there is no decrease 
in the percentile level.  
 
If merely one data sample is available, it is difficult 
to know the severity of the sample. The best one 
can do is to assume that it is close to the expected 
sample. Under such conditions, one should possible 
select the 95% value as the short term 
characteristic.  
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It is to be pointed out that the contour method is an 
approximate method. For final design a full long 
term response analysis is recommended.  
 

Adequate percentile versus severity of data base
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Fig. 10 Best percentile level versus severity of 50-
year data base.  
 
8. CONCLUSIONS 
 
A generic model for simulation of 50-year 
hurricane data bases is used for investigating 
uncertainties related to extreme value predictions 
from a limited amount of data.  
 
The severity of a typical 50-year period simulation 
is expected to be qualitatively representative for a 
possible 50-year hurricane sample for a Gulf of 
Mexico area. It should be pointed out that there is 
no physics baked into the simulation model. The 
results of the model should therefore merely be 
used for assessing uncertainties in wave and 
response characteristics when merely one 50-year 
period of data are available.  
 
With the limitations of the present simulation 
model in mind, the main findings of the present 
study can be summarized as follows:  
 As some minimum variability level, the 

aleatory variability suggest that the observed 
largest value in a 100-year period could well 
vary from -10% to +30% of the 10-2- annual 
probability value. 

 Fitting a probabilistic model to a 50-year 
period of data, introduces epistemic 
uncertainties into the analysis. If a fitted model 
suggests a most probable 10-2-probability 
hurricane peak significant wave height of, 

psh ,

~
, 

we must accept that the underlying value can 
differ with +/- 20-25% from the result of the 
fitted model.  

 The estimated 10-2 – annual probability contour 
lines for the hurricane peak characteristics, hs,p 

and tp,p, show a considerable variation between 
the various 50-year periods.  

 Regarding response predictions, the study 
clearly demonstrate that both the long term 
variability and the short term variability must 
accounted for. Neglecting the short term 
variability will significantly underestimate the 
target response quantity in view of rule defined 
safety factors.  

 A considerable variation in predicted 10-2 – 
probability response is observed between the 
various 50-year data bases. For the period 
insensitive linear system the coefficient of 
variation is 17%, while as expected the 
quadratic system with preference regarding 
period is 35%. For the period sensitive cases 
variability is somewhat less.  

 
Finally, the application of the contour line method 
to GoM problems has been investigated for the 
included response cases. The results suggest that 
this method can be a useful method for – at least - 
early phase considerations. Finding the 30-minute 
extreme value distribution for the target response 
for the worst  sea state along the 10-2 – probability 
contour line, the long term extreme can be 
estimated by the 95-percentile of this distribution.  
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Table 7 Long term extremes for the most probable maximum response, the actual maximum response and 
corresponding percentiles for the contour method. 
 

Case 1 Case 2 Case 3 Case 4

y0.01
(1)  (2) y0.01  y0.01  y0.01 

Reference 27.8 34.4 0.88 21.9 28.8 0.85 375 571 0.87 296 464 0.91

1 32.2 39.5 0.87 25.4 32.2 0.83 524 780 0.89 390 625 0.91

2 27.4 34.6 0.91 21.6 28.0 0.96 389 554 0.89 271 413 0.96

3 33.1 40.4 0.99 21.0 27.7 0.91 459 622 0.94 290 414 0.91

4 28.3 34.4 0.92 22.7 31.9 0.99 419 625 0.96 276 419 0.95

5 37.5 46.1 0.82 25.3 32.1 0.82 757 1051 0.83 438 669 0.90

6 25.9 33.7 0.96 20.1 26.7 0.81 307 518 0.94 245 355 0.77

7 24.4 32.6 0.97 22.1 29.5 0.96 310 461 0.94 275 421 0.95

8 22.2 28.5 0.95 18.7 24.3 0.84 237 374 0.94 209 335 0.93

9 26.4 34.0 0.97 21.2 29.5 0.96 318 443 0.86 241 374 0.87

10 22.2 28.5 0.98 20.7 26.7 0.97 240 365 0.98 222 357 0.98

11 38.7 47.3 0.94 23.4 32.3 0.98 650 855 0.74 424 582 0.89

12 22.0 28.3 0.99 19.4 23.7 0.89 224 366 0.99 214 294 0.93

13 22.4 29.2 0.99 20.7 28.1 0.98 233 358 0.98 223 342 0.97

14 23.5 32.7 0.99 22.7 29.9 0.97 279 426 0.97 273 359 0.92

15 26.8 35.4 0.90 20.4 26.2 0.96 359 558 0.83 253 389 0.91

16 23.9 33.3 0.99 21.2 28.2 0.97 295 452 0.99 258 403 0.98

17 32.0 41.6 0.94 22.3 34.2 0.99 515 785 0.91 333 535 0.95

18 29.1 36.6 0.94 23.0 29.6 0.90 410 623 0.93 309 491 0.94

19 30.9 38.2 0.81 23.1 32.4 0.99 475 723 0.82 354 532 0.96

20 19.0 26.3 0.97 16.8 24.8 0.98 190 324 0.97 158 239 0.89

Mean  27.4 35.1 0.94 21.6 28.9 0.93 379.5 563.2 0.91 282.9 427.4 0.92

St. Dev.  5.3 5.8 0.05 2.1 3.0 0.06 149.7 195.6 0.07 73.3 112.0 0.05

C.o.V. 0.19 0.17 0.06 0.10 0.10 0.07 0.39 0.35 0.08 0.26 0.26 0.05

50‐year database [#]
01.0

~y 01.0
~y 01.0

~y 01.0
~y

(1): y0.01 is the 10-2-probability response obtained from a long term analysis 
(2):  is the percentile of the extreme value distribution matching the y0.01.  
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Table 8 Coefficients of the fitted joint model of Hs,p and Tp,p, Eq. (22) 
 

50‐year database # Eq. (23) Eq. (16) Eq. (17)

k  a1
(1) a2 a3  b1 b2

(2) b3
(2)

Reference 1.078 2.211 0.000 1.741 0.174 0.0100 0.008 0.0711

1 0.866 2.368 0.000 1.985 0.115 0.0100 0.004 0.0000

2 1.120 2.400 0.000 1.879 0.149 0.0000 0.332 0.3618

3 1.134 2.525 0.000 1.868 0.152 0.0100 407.650 1.6513

4 1.098 2.333 0.000 2.001 0.122 0.0000 0.289 0.3695

5 0.722 2.163 0.000 1.877 0.139 0.0100 0.250 0.4133

6 0.809 1.318 0.000 1.721 0.178 0.0099 0.010 0.0000

7 1.364 2.350 0.000 1.927 0.126 0.0000 0.111 0.2465

8 1.185 1.643 0.000 1.849 0.152 0.0100 0.008 0.0000

9 1.025 1.788 0.000 2.109 0.097 0.0100 1105.800 1.5823

10 1.639 1.970 0.000 2.101 0.086 0.0000 11.813 0.9231

11 0.848 2.740 0.000 1.933 0.128 0.0000 0.130 0.3302

12 1.311 1.581 0.000 2.077 0.088 0.0100 0.008 0.0000

13 1.746 1.875 0.000 2.130 0.081 0.0100 0.022 0.0952

14 1.612 2.304 0.000 1.836 0.144 0.0100 0.035 0.0000

15 0.747 1.386 0.000 1.649 0.196 0.0001 10.393 1.0052

16 1.922 2.548 0.000 1.826 0.154 0.0080 0.047 0.2921

17 0.912 2.215 0.000 1.904 0.140 0.0050 3355400.000 2.8434

18 1.180 2.635 0.000 1.913 0.135 0.0100 2.107 0.8163

19 0.787 1.865 0.000 1.817 0.156 0.0000 1.795 0.6252

20 1.217 1.241 0.000 1.661 0.207 0.0000 0.465 0.4916  
 
(1):  A reasonable fit to the data is found without using a constant term, therefore 0.01 a is introduced. 

 
(2):  Rather extreme values are seen for some few databases regarding b2 and b3. This is a result of an automatic 
default fitting of 3 parameters to very few data points. The outlier values will to a large extent compensate and the 
resulting curve give acceptable fit to the observations. However, the variance decays rapidly to a value equalling b1 
and for practical purpose one could just have used 1

2 b  for these cases.  


