Combined Wind and Waves over a Fringing Reef

Alejandro Sánchez

Jane McKee Smith, Zeki Demirbilek, and Stan Boc

Coastal Hydraulics Laboratory

U.S. Army Corps of Engineers, Vicksburg MS

10th International Workshop on Wave Hindcasting and Forecasting & Coastal Hazard Assessment November 16, 2007

Introduction

- Surge and Wave Island Modeling Studies (SWIMS), USACE
 - Coastal modeling package: TWAVE
- Targeted for U.S. Civil Defense agencies and district offices
- PC-based, user-friendly, comprehensive package
- Multi-level: Quick answers with large uncertainty, and slow answers with small uncertainty

Objective

 To test the applicability of various models to simulate wave transformation and setup over fringing coral reefs

Summary and Conclusion

- Setup generated by strong winds is a significant contribution to water levels over fringing coral reefs
- Wind also causes increased wave breaking intensity causing the waves to break further offshore and reducing the setup
- STWAVE and ADCIRC are agreed relatively well with laboratory measurements of wave heights and water levels over a fringing reef
- 1-D wave energy balance models are robust, fast and are suitable for engineering applications, feasibility studies, etc.

Outline

- Laboratory Datasets
- Numerical Models
- Results
 - Waves only
 - Wind and waves
- Discussion
- Summary and Conclusion
- Future Work

Laboratory Dataset

- University of Michigan Laboratory Study
 - 83 Tests
 - 1:64 scale Guam-type reef
 - Wind and irregular waves
 - Gauges 1-6 on reef slope and gauges 7-9 on reef top

STWAVE and ADCIRC (STAD)

- <u>ST</u>eady-state spectral <u>WAVE</u> model
 - Solves the wave action balance equation by finite-differences on a cartesian grid
 - Wave breaking modified to use Battjes and Janssen (1978)

$$D_{b} = \frac{1}{4} \rho g B \overline{f} H_{b}^{2} Q_{b} \qquad H_{rms}^{2} \ln Q_{b} = H_{b}^{2} (1 - Q_{b}) \qquad H_{b} = 0.88 \tanh(kd) / k$$

- 5-m grid resolution
- No bottom friction
- No wind generation (1-km fetch, simplicity)
- <u>ADvanced CIRC</u>ulation model
 - Finite-element, nonlinear, depth-averaged flow model
 - 10- to 30-m grid resolution
- Coupling
 - Wave radiation stress gradients from STWAVE to ADCIRC
 - Water levels from ADCIRC to STWAVE
 - No wave-current interaction
 - At least 3 simulations of STWAVE and 2 of ADCIRC

One-dimensional Models

Wave energy balance equation

$$\frac{\partial}{\partial x}(EC_g\cos\theta) + D_b + D_f = 0$$

- Wave Breaking
 - Dally et al. 1985 (DDD85)

$$D_b = \frac{\kappa}{d} \Big[EC_g - \min(E, E_s) C_g \Big],$$
$$E_s = \frac{1}{8} \rho g (\Gamma d)^2$$

Janssen and Battjes 2007 (ABJB07)

$$D_b = \frac{3\sqrt{\pi}}{16} \rho g B \overline{f} \frac{H_{rms}^3}{d} Q_b,$$

$$Q_b = 1 + \frac{4}{3\sqrt{\pi}} \left(R^3 + \frac{3}{2}R \right) \exp\left(-R^2\right) - \exp(R), \qquad R = H_b / H_{rms}$$

• Momentum balance

$$\rho g(h+\eta)\frac{\partial \eta}{\partial x} + \frac{\partial S_{xx}}{\partial x} = \tau_{wx},$$

UM Dataset, Waves Only

UM Dataset, Waves Only

UM Dataset, Wind Only

UM Dataset, Wind and Waves

— ABJB07, — DDD85, — STAD

UM Dataset, Wind and Waves

Wave Height Over Reef-top

 Wave height increase not related to wind speed?

Wind setup

 Wind setup important for strong winds or shallow depths

Spectral Wave Transformation

• Natural periods of oscillation for an open basin

$$T_n = \frac{4l_r}{(1+2n)\sqrt{gd_r}}$$

- Infragravity wave energy >> gravity wave energy
- First and forth modes

Infragravity Wave Energy

$$H_{low} = 4\sqrt{m_o}$$

$$m_o = \int_0^{f_c} S(f) df$$
 where $f_c = 0.02 \,\mathrm{Hz}$

- Infragravity energy
 - < 0.02 Hz
 - Increases with increasing incident wave period
 - Increases with water depth

Wave Height Error Analysis

• Relative error (%)

$$\varepsilon = \frac{100}{NH_o} \sum_{i=1}^{N} \left| H_{s,\text{meas}}^{i} - H_{s,\text{comp}}^{i} \right|$$

- Waves only
 - Average errors $< 0.15 H_{o}$
 - Max errors $<0.25H_{o}$
- Waves and Wind
 - Average errors $< 0.15 H_o$
 - Max errors $< 0.25 H_o$
- ABJB07 Best results

Setup Error Analysis

Relative error (%)

$$\varepsilon = \frac{100}{NH_o} \sum_{i=1}^{N} \left| \eta_{meas}^{i} - \eta_{comp}^{i} \right|$$

- Waves only
 - Average errors $< 0.05 H_{a}$
 - Max errors $<0.12H_{o}$
- Waves and Wind
 - Average errors $< 0.15 H_o$
 - Max errors $< 0.35 H_o$
- Excellent results for cases with no wind
- Ok results with wind •
- ABJB07 Best results

9

9

Runup, UM Dataset

- $R_{2\%}$ = Runup exceeded Mase (1989) 2% of the time $R_{2\%} = 1.86 \xi^{0.71}$
- Runup with respect to still-water level
- Slope 1:12

$$\xi = \tan \theta / \sqrt{H_r / L_o}$$

Discussion

- Although the 1-D models performed slightly better than the STWAVE/ADCIRC, their applicability is limited, and STWAVE and ADCIRC have a lot more physics such as wave-current interaction, wave growth terms, 2-D effects etc.
- Empirical coefficients likely difference than for sandy beaches and need to be estimated based on breaker types, wind, roughness etc.
- More work needed on the sensitivity of ADCIRC to grid resolution
- Despite the presence of long period infragravity motions, the models are able to predict reasonably well wave heights and average water levels

Summary and Conclusion

- Setup generated by strong winds is a significant contribution to water levels over fringing coral reefs
- Wind also causes increased wave breaking intensity causing the waves to break further offshore and reducing the setup
- STWAVE and ADCIRC are agreed relatively well with laboratory measurements of wave heights and water levels over a fringing reef
- 1-D wave energy balance models are robust, fast and are suitable for engineering applications, feasibility studies, etc.

Future Work

- Include the formulation for wave breaking dissipation of Janssen and Battjes (2007) in STWAVE
- Incorporate a formulation for wave setup in STWAVE which would decreases the number of iterations between STWAVE and ADCIRC
- Develop and incorporate an empirical formulation for wave runup in STWAVE

Thank you. Questions?

Motivation

- Forecast
 - 36-hr forecast at 6-hr intervals interpolated to 1-hr intervals
 - Unfeasible to simulate whole time history using complex nonlinear models such as Boussinesq-type models
 - Need to identify worst case conditions for potential runup and inundation for nonlinear models
 - Backup model
- Hindcast
 - Not enough data on hurricane events to merit the use nonlinear models
- Hypothetical events
 - Only need to be realistic
- Engineering Applications
 - Sometimes you just don't need so much accuracy

Hayman Island Dataset

Hayman Island Dataset

Setup: Review of Empirical Relations

• Seelig (1983)

$$\Delta \eta = \begin{cases} -0.92 + 0.77 \log_{10} \left(H_o^2 T \right) & \text{for } h_r = 0 \text{ m} \\ -1.25 + 0.73 \log_{10} \left(H_o^2 T \right) & \text{for } h_r = 2 \text{ m} \end{cases}$$

• Gourlay (1996)

$$\Delta \eta_r = \frac{3}{64\pi} K_p \frac{g^{1/2} H_o^2 T}{\left(h_r + \eta_r\right)^{3/2}} \left[1 - K_R^2 - 4\pi K_r^2 \frac{1}{T} \sqrt{\frac{h_r + \eta_r}{g}} \right]$$

• Proposed

$$\begin{split} &\Delta \eta_{total} = \Delta \eta_{wave} + \Delta \eta_{wind} \\ &\Delta \eta_{wave} = -0.18h_r + 0.48\log_{10}\left(H_o^2 T\right) - 5.53H_o / T^2 \\ &\Delta \eta_{wind} = \frac{WC_d U^2}{10^5(h_r + \Delta \eta_{wave})} \end{split}$$

Only wave setup,
Wind and Wave setup

Laboratory Dataset

- University of Michigan Laboratory Study
 - 83 Tests
 - 1:64 scale Guam-type reef
 - Irregular waves
 - Wind and waves
- Hayman Island Fringing Reef Study (Gourlay, 1994, Coast. Eng. Vol. 23)
 - 18 Tests
 - 1:20 scale, Australian reef
 - Regular Waves
 - No wind

One-dimensional Models

- Wave energy balance equation
 - $\frac{\partial}{\partial x}(EC_g\cos\theta) + D_b + D_f = 0 \qquad E = \frac{1}{8}\rho g H_{rms}^2 \qquad C_g = nC \qquad n = \frac{1}{2} + \frac{kd}{\sinh 2kd}$
 - Wave Breaking
 - Dally et al. 1985 (DDD85) $E_{s} = \frac{1}{8} \rho g (\Gamma d)^{2}$ • Janssen and Battjes 2007 (ABJB07) $D_{b} = \frac{3\sqrt{\pi}}{16} \rho g B \overline{f} \frac{H_{rms}^{3}}{d} Q_{b},$ $Q_{b} = 1 + \frac{4}{3\sqrt{\pi}} \left(R^{3} + \frac{3}{2} R \right) \exp(-R^{2}) - \operatorname{erf}(R), \quad R = H_{b} / H_{rms}$ $H_{b} = 0.88 \tanh(\gamma k d / 0.88) / k \quad \gamma = H_{b} / d = 0.5 + 0.4 \tanh(33H_{o} / L_{o})$
- Momentum balance

$$\rho g(h+\eta) \frac{\partial \eta}{\partial x} + \frac{\partial S_{xx}}{\partial x} = \tau_{wx}, \qquad \tau_{wx} = C_d \rho_a U |U|, \qquad S_{xx} = E \left(n(\cos^2 \theta + 1) - \frac{1}{2} \right),$$
$$H_s = 4\sqrt{m_o} \qquad m_o = \int_{f_c}^{f_{ny}} S(f) df \text{ where } f_c = 0.02 \text{ Hz}, f_{ny} = \text{Nyquist Freq.}$$

Coastal Modeling Package: TWAVE

Regional Coastal Nearshore

• Sy

TWAVE: Example

Elapsed Time, hr

Coastal Modeling Package: TWAVE

- Background
 - Coastal Modeling Package developed Surge and Wave Island Modeling Studies (SWIMS) by the U.S. Army Corps of Eng. (USACE)
- TWAVE Coastal Modeling Package
 - Multi-level, user-friendly, comprehensive

Multi-level Approach

Coastal Modeling Package

Regional Coastal Nearshore

Coastal Modeling Package: TWAVE

Regional Coastal Nearshore

UM Dataset, Wind and Waves

— ABJB07, — DDD85, — STAD

UM Dataset, Waves Only

Hayman Island

UM Dataset, Wind and Waves

Hayman Island

