

Comparison of Empirical Methods and a Boussinesq-type Wave Model for Predicting Overtopping of Coastal Structures

> Patrick Lynett, Texas A&M University Don Resio, ERDC Mathijs van Ledden, Haskoning, Inc.

This slide hijacked by Tsunami 5:41 am HST Earthquake off Chile Coast

- □7.7 moment magnitude
- Depth 60 km
- 5:55 am HST Local Tsunami Warning for Chile/Peru
- 5:57 am HST Tsunami Advisory for West Coast and Hawaii
- 6:53 am HST no reports of damaging tsunami in Chile, local warning cancelled
- 6:56 am HST Advisories taken down

This slide hijacked by Tsunami Small tsunami was recorded by NOAA DART

This slide hijacked by Tsunami Small tsunami was recorded by NOAA DART

Comparison of Empirical Methods and a Boussinesq-type Wave Model for Predicting Overtopping of Coastal Structures

> Patrick Lynett, Texas A&M University Don Resio, ERDC Mathijs van Ledden, Haskoning, Inc.

Motivation for Study

There is a technical discontinuity of the hydrodynamic science/modeling/effort used in design of coastal structures

Models provide estimate of waves and water levels near the toe of the structures (typically a couple hundred meters seaward)

Offshore to nearshore: physicsbased modeling of wave and surge (e.g. WAM, STWAVE, ADCIRC) OT Rate, which controls design levee elevation, is estimated with empirical equations

$$\frac{q}{gH_{m0}^3} = \frac{0.067}{\sqrt{\tan\alpha}} \gamma_b \xi_0 \cdot \exp\left(-4.75 \frac{R_c}{H_{m0}} \frac{1}{\xi_0 \gamma_b \gamma_f \gamma_\beta \gamma_\nu}\right)$$

Motivation for Study

New Orleans Lakefront Airport Floodwall nr Seabrook Bridge

Methodology/Outline

- Quick empirical background
- Boussinesq review, validation, and limitations
 - Runup
 - □ Wave breaking
 - Overtopping
- Empirical and Boussinesq comparisons
- Numbers to keep in mind:
 - □ Critical overtopping rate used in levee design:
 - 0.1 ft³/s/ft = 0.01 m³/s/m = 10 l/s/m

Summary of Conclusions

- Boussinesq does a very good job at predicting nearshore wave evolution, including overtopping rates
- For a levee with a simple reach (single slope), there is no accuracy preference between empirical methods and Boussinesq
- If the reach is complex, empirical methods can still be used, but must be provided an estimate of the wave properties (height and setup) at the structure toe
 - Boussinesq can fill this role, represents a hybrid approach
 - Boussinesq can also do "everything"

Empirical Approach

The overtopping formulation from Van der Meer reads (see TAW 2002):

$$\frac{Q}{\sqrt{gH_{m0}^3}} = \frac{0.067}{\sqrt{\tan \alpha}} \gamma_b \xi_0 \exp\left(-4.75 \frac{R_c}{H_{m0}} \frac{1}{\xi_0 \gamma_b \gamma_f \gamma_\beta \gamma_\nu}\right)$$

with maximum:
$$\frac{Q}{\sqrt{gH_{m0}^3}} = 0.2 \exp\left(-2.6 \frac{R_c}{H_{m0}} \frac{1}{\gamma_f \gamma_\beta}\right)$$

With:

- Q : overtopping rate [cfs/ft]
- g : gravitational acceleration [ft/s²]
- H_{m0} : wave height at toe of the structure, as if the structure was not there [ft]
- ξ_0 : surf similarity parameter [-]
- α: slope [-]
- R_c: freeboard [ft]
- γ : coefficient for presence of berm (b), friction (f), wave incidence (β), vertical wall (v)

Boussinesq Equations

□ Boussinesq Equations (Peregrine, 1967; Ngowu, 1993):

Functions B, C lead to 3rd order spatial derivatives in model (eqns)

 Accurate for long and intermediate depth waves, kh<~3 (wavelength > ~ 2 water depths)

Boussinesq Equations

 $H = h + \eta$

Boussinesq Equations

New terms,
Momentum Equation

$$\begin{bmatrix}
u_{\alpha_{1}} + u_{\alpha} \cdot \nabla u_{\alpha} + g \nabla \zeta \\
u_{\alpha_{1}} + u_{\alpha} \cdot \nabla u_{\alpha} + g \nabla \zeta
\end{bmatrix} +$$

$$\begin{cases}
\frac{z_{\alpha}^{2}}{2} \nabla (\nabla \cdot u_{\alpha_{1}}) + z_{\alpha} \nabla Q_{t} + z_{\alpha_{1}} [z_{\alpha} \nabla (\nabla \cdot u_{\alpha}) + z_{\alpha} \nabla Q] \\
[Q \nabla Q - \nabla \eta Q_{t} + (u_{\alpha} \cdot \nabla z_{\alpha}) \nabla Q + z_{\alpha} \nabla (u_{\alpha} \cdot \nabla Q)] + \\
[Q \nabla Q - \nabla \eta Q_{t} + (u_{\alpha} \cdot \nabla z_{\alpha}) \nabla Q + z_{\alpha} \nabla (u_{\alpha} \cdot \nabla Q)] + \\
[Q \nabla Q - \nabla \eta Q_{t} + (u_{\alpha} \cdot \nabla z_{\alpha}) \nabla Q + z_{\alpha} \nabla (v_{\alpha} \cdot v_{\alpha})] \\
+ \\
\begin{cases}
\frac{\eta^{2}}{2} \nabla \cdot u_{\alpha_{1}} - \eta u_{\alpha} \cdot \nabla Q + \eta Q \nabla \cdot u_{\alpha} \\
\frac{\eta^{2}}{2} [(\nabla \cdot u_{\alpha})^{2} - u_{\alpha} \cdot \nabla (\nabla \cdot u_{\alpha})] \\
\end{bmatrix} + \\
\end{cases}$$
Where $: Q = \nabla \cdot (hu_{\alpha})$

Why Boussinesq??

- Boussinesq model provides a practical nearshore wave processes model
 - Excellent hydrodynamic accuracy for wind waves
 - Fundamentally irrotational and inviscid, with empirical add-ons for approximating dissipation (more about these later)
 - Not as physically complete as Navier-Stokes models
 - Can be run in a reasonable time, ~10 seconds of desktop wall time per wave period for 1HD problems
- If you want numerous nearshore wave simulations, providing a statistical database, Boussinesq is the choice

Validation of Runup Algorithm

Comparison with the Irribaren Law for wave runup:

$$\frac{R}{H_0} = \xi = s(H_0/L_0)^{-1/2}$$

- Lynett, P., Wu, T.-R., and Liu, P. L.-F., "Modeling Wave Runup with Depth-Integrated Equations," Coastal Engineering, 2002.
- Lynett, P., and Liu, P. L.-F., "A Numerical Study of the Runup Generated by Three-Dimensional Landslides," JGR-Oceans. 2005.
- Korycansky, D., Lynett, P., and Ward, S., "Runup from Impact Tsunami," GJI, 2007.
- Lynett, P., "The Effect of a Shallow Water Obstruction on Long Wave Runup and Overland Flow Velocity," Journal of Waterway, Port, Coastal, and Ocean Engineering (ASCE), 2007.

Energy Dissipation Submodels (Add-ons)

$$\frac{\partial u_1}{\partial t} + \frac{\varepsilon_o}{2} \nabla \left(u_1 \cdot u_1 \right) + \nabla \zeta + \mu_1^2 \{ \dots \} - R_b + R_f = 0$$

- Bottom friction with a quadratic drag law
- Breaking dissipation, **R**_b, following Kennedy *et al.* (2000)

$$R_{f} = \frac{f}{h+\zeta} u_{b} |u_{b}|$$

$$R_{bx} = \frac{1}{H} \left(\left[\nu \left(Hu_{1}\right)_{x}\right]_{x} + 0.5 \left[\nu \left(Hu_{1}\right)_{y} + \nu \left(Hv_{1}\right)_{x}\right]_{y} \right)$$

$$R_{by} = \frac{1}{H} \left(\left[\nu \left(Hv_{1}\right)_{y}\right]_{x} + 0.5 \left[\nu \left(Hu_{1}\right)_{y} + \nu \left(Hv_{1}\right)_{x}\right]_{x} \right)$$

$$\nu = B\delta^{2}H\zeta_{t}$$

- Little verification to-date of bottom friction form and f-values in phaseresolving wave models (set to zero in validation/benchmarking)
- Breaking model is highly empirical, but has undergone a large validation exercise
 - $\hfill\square$ Breaking initiates when free surface gradient, $\partial \zeta \, / \, \partial x$, exceeds some threshold
 - □ Turns off when dips below another threshold

Irregular Wave Breaking Onto a Shelf

x (m)

Irregular Wave Breaking Onto a Shelf

Experimental data from Don Ward et al., 2007

Wave Overtopping – Limitations with Boussinesq
 Wave overtopping is a turbulent, 3D problem
 Strong vertical velocity and acceleration components

Wave Overtopping – Limitations with Boussinesq
 Wave overtopping is a turbulent, 3D problem
 Strong vertical velocity components

Wave Overtopping – Limitations with Boussinesq

 Turbulent interaction with reflected wave leads to a non-uniform overtopping time series, even for regular incident waves

Wave Overtopping – Limitations with Boussinesq Now, with the Boussinesq, we cannot model this turbulent 3D interaction

□ How important is this phenomenon to predicting overtopping???

Wave Overtopping – Limitations with Boussinesq Now, with the Boussinesq, we cannot model this turbulent 3D interaction

□ How important is this phenomenon to predicting overtopping???

Wave Overtopping – Limitations with Boussinesq

- Now, with the Boussinesq, we cannot model this turbulent 3D interaction
 - How important is this phenomenon to predicting overtopping???
 - Experimental data comparisons indicate that, in the timeaveraged sense, the Boussinesq provides reasonable results
 - Mean OT rate = OK
 - Variance statistics = not OK

Would need to use physical modeling or N-S modeling

Wave Overtopping – Boussinesq Validation

Comparison with standard benchmark data of Saville (1955)

Wave Overtopping

- Comparison with TAW formulation for Simple Levee
 - Simulation parameters:
 - Crest elevatior = 17.5'
 - Toe elevation = +1'
 - □ 1/3<s<1/8
 - □ 1'<R_c<4'
 - □ 2'<H_s(600')<8'
 - □ 8s<T_p<16s

Bous and empirical agree well for a wide range of levee configurations, **as long as H_toe (if structure was not there) is used in empirics**

Wave Overtopping

- Comparison with TAW formulation for Simple Levee
 - Simulation parameters:
 - Crest elevation = 17.5'
 - □ Toe elevation = +1'
 - □ 1/3<s<1/8
 - □ 1'<R_c<4'
 - □ 2'<H_s(600')<8'
 - □ 8s<T_p<16s

Bous and empirical agree well for a wide range of levee configurations, **as long as H_toe (if structure was not there) is used in empirics**

Information From Boussinesq Sims Example: Levee with foreshore protection

Information From Boussinesq Sims

Conclusions

- Boussinesq does a very good job at predicting nearshore wave evolution, including overtopping rates
- For a levee with a simple reach (single slope), there is no accuracy preference between empirical methods and Boussinesq
- If the reach is complex, empirical methods can still be used, but must be provided an estimate of the wave properties at the structure toe
 - Boussinesq can fill this role, represents a hybrid approach
 - □ Boussinesq can also do "everything"