Updates to WAM Cycle 4.5.+

R.E. Jensen - USACE-CHL H. Gunther-GKSS P.A.E.M. Janssen - ECMWF

10th International Workshop on Wave Hindcasting and Forecasting 11-16 November 2007 Oahu, Hawaii

MOTIVATION

- WAM Cycle 4 has undergone modifications over the last release under the WAM umbrella
- These modifications have been performed mainly in an isolated mode
- Generally not publicized
 - (Internal Reports, Conference Presentations, Journal Articles)
- Better inform the modeling community of these changes
- Summary of work over the past 3-years
- Portions are from WISE-2007
- Portions are from work at ECMWF and USACE

Outline

- Introduction
- What is new
- What is different
- Some results
- Where to go next
- Summary

Introduction: Historical Perspective

- Pre-1983: Computers: slow / little memory
- The WAM Group's Challenges:
 - Use state-of-the-art physics
 - Build an operational global wave model
 - Combine data assimilation system (ERS-1)
 - Include time invariant shallow water mechanisms

WAM-Cycle4

The WAM Wave Model

$$\frac{\partial F}{\partial t} + (\cos\phi)^{-1} \frac{\partial}{\partial\phi} (\phi \cos\phi F) + \frac{\partial}{\partial\lambda} (\lambda F) + \sigma \frac{\partial}{\partial\sigma} (\omega F) + \frac{\partial}{\partial\theta} (\phi F) = S$$

Where

- $F(\lambda,\phi,\sigma,\theta,t)$ wave energy density spectrum
- (λ, ϕ) longitude, latitude
- (σ, θ) intrinsic frequency, wave direction

$$\oint = \left(c_g \cos \theta + u_{North} \right) / R$$

$$\oint = \left(c_g \sin \theta + u_{East} \right) / \left(R \cos \phi \right)$$

$$\oint = c_g \sin \theta \tan \phi / R + \theta_D^{X} + \theta_C^{Y}$$

$$\oint = \theta_C$$

Leap to the Present

- Wind field quality improvements
- Computer's speed/memory increased
 - Higher resolution global implementation
 - Local applications
- Basic studies on wave physics / numerics
- Reliable directional wave measurements ?
- Data assimilation techniques developed / implemented
- New demands for wave modeling
 - Shallow water
 - New group of users
- Programming paradigm and platforms have made significant progress

Model Users

- Met-Ocean Forecast Centers
 - Global to local
 - Degrees to minutes
 - Deep to shallow water
- Research Institutes
 - Modifying, testing, implementing
 - All temporal and spatial domains
 - Multi-nesting
 - Coupling with ocean / atmospheric processes and interaction mechanisms

WAM Cycle 4.5.1

- Standard FORTRAN 95
- Free format code
- Modular rather than common blocks
- Dynamic allocation arrays
- Application of intrinsic functions
- IMPLICT none
- INTERFACE Blocks
- USE module, ONLY

ONE EXECUTABLE FOR ALL APPLICATIONS

Source Functions

• Integration method is fully implicit

$$F_{n+1} = F_n + \frac{\Delta t S}{1 - \Delta t G}$$

- Growth limited as given by Hersbach and Janssen, (1999)
- Diagnostic tail is defined by Cycle 4

$$Max\{2.5f_{mean}; 4f_{PM}\}$$

 Optional wave breaking source function defined by Battijes and Janssen (1978)

New Options

- Spectral direction modifications
- Sea Ice
- Multiple sub-nest domain
- Time interpolation of BC spectra included in main routine
 - Significant reduction of I/O
- Blocked grid computation removed
- Cold-start removed

REDUCTION IN PARTS and SYSTEM I/O

Research Activities

- High winds and the C_D :
 - Elevated wave heights in Charlie (2004)
 - Original tests on Camille
 - Extended tests
 - Dennis, Ivan, Katrina, Lili and Rita
 - Limited the drag based on these tests
 - IS TO SOME EXTENT A LEAP IN THE DARK
 - Tests also included WAM 4.5.2 modification of S_{ds} (Bidlot et al., 2006)

WAM 4.5.2

- Pseudo-linear coupling with highresolution winds (Janssen, 1991)
 - Influence on C_d from wave induced stress term
 - At high winds C_d increases
 - The profile remains time invariant based on PBL
- Pure coupling at the Air-Sea Interface at ECMWF
 - Increasing wave heights
 - Increase in drag
 - Alters the wind profile
 - Decrease the wind speed
- There are differences of these approaches

Data Assimilation

- WAM Model Performance
 - Reduction in the bias, RMSE, SI,...
 - Improved physics
 - Improved Winds
- Data Assimilation (ECMWF)
 - Incorporate altimeter data
 - Incorporates SAR

Data Assimilation (ECMWF)

Summary and Outlook

- Let the atmospheric modeling do all the work
- Model Physics: Source terms
 - Wind input
 - Fully coupled to the atmosphere vs pseudo linear coupling
 - DIA replacement
 - It is coming DTR
 - Dissipation
 - Bidlot et al. (2007) solution have significant merits
 - Depth limited spectral breaking
 - Still needs work

Summary and Outlook

- Data Assimilation is the key
- Operational:
 - Parallel Programming paradigms
 - OpenMP
 - MPI
 - Factors of 10 to 100 decrease run time
 - 8 times faster

 Doubling the resolution

