#### Hurricane Wind, Wave, and Surge Computations Deficiencies and Research Needs

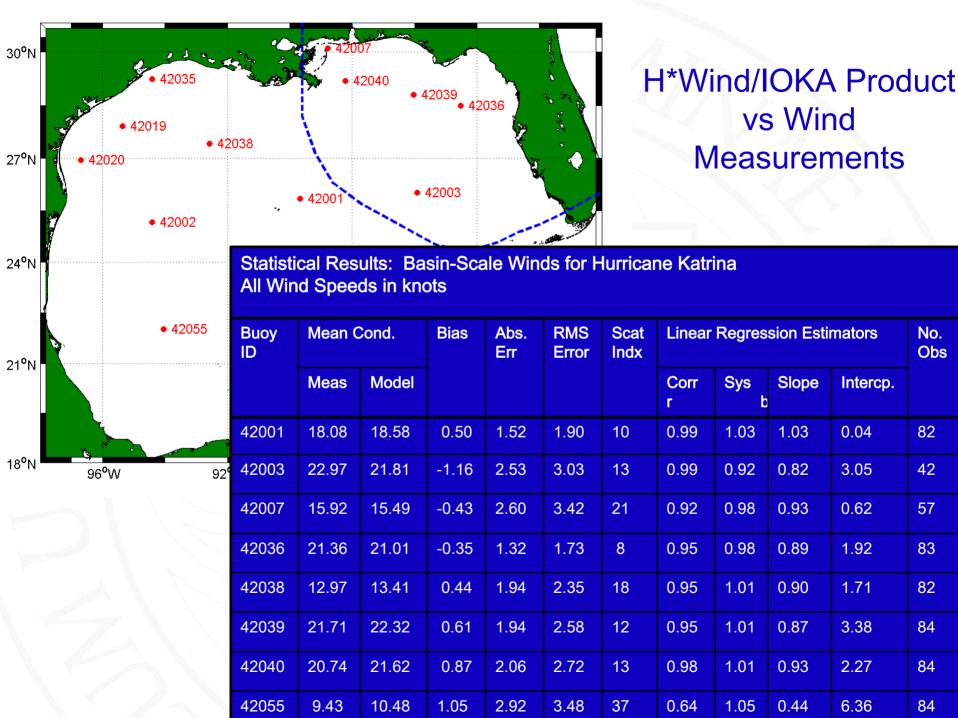
J. Westerink, J. Smith, V. Cardone, A. Cox, R. Jensen, T. Wamsley, C. Dawson, D. Resio, B. Ebersole, A. Kennedy

> 10th IWWHF-CHS November 11-16, 2007

### **Motivation**

- USACE/FEMA have intensively focused on improving the definition of hurricane induced wind, wave, and surge conditions in the past 2 years
- Develop multi-process, multi-scale coupled modeling system allowing the interaction of tides, riverine flow, wind, atmospheric pressure and waves in order to determine wave conditions and still water levels
- Merge high resolution computational models with high resolution topographic, bathymetric, surface condition and raised feature definitions
- Do not use case specific parameter tuning of sub-grid scale processes in order to improve fit to observed data
  - Improve the resolution and the physics
- Many questions have arisen in terms of how we can best improve our hurricane wave and surge predictions

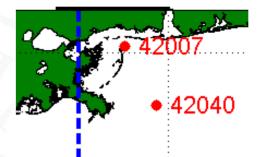
### The Way Ahead


- Better resolution leads to better physics (meter scale)
- More efficient and accurate numerical engines allow higher localized resolution and therefore better physics
- Better physics for meteorology
- Better physics for waves and circulation
  - Momentum fluxes
  - Bottom friction and dissipation
  - Hydrologic rainfall/runoff coupling
  - 3D effects
  - Sediment morphology
  - Better data collection, validation, and archiving

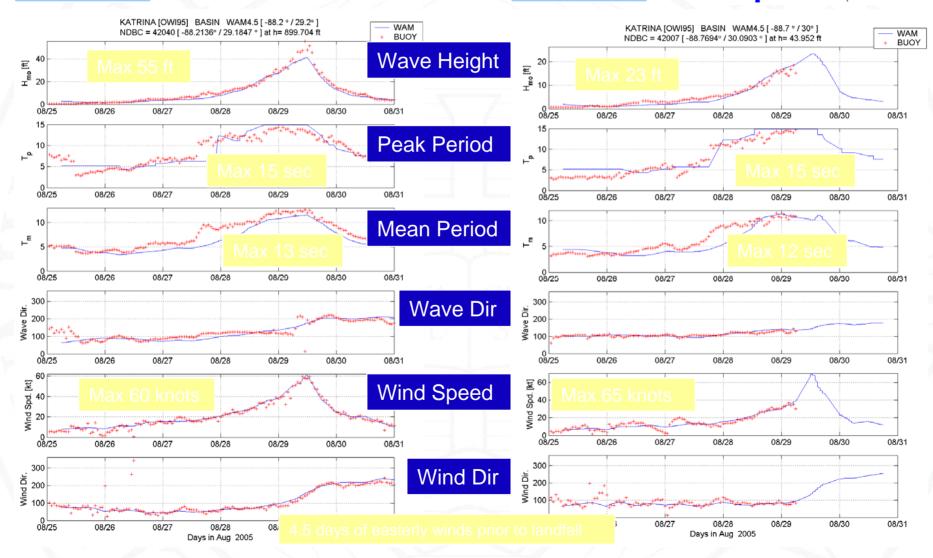
## JCS – IPET – LACPR – HPO Team

- B. Ebersole, J. Smith, R. Jensen, D. Resio, M. Cialone, T. Wamsley, A. Sleath; USACE ERDC
- J. Ratcliff, H. Pourtaheri, A. Mislan, H. Winer; USACE MVN
- M. Powell; HRD/NOAA
- J. Westerink, S. Bunya, J. Dietrich, H. Westerink; University of Notre Dame
- R. Luettich, B. Blanton, J. Flemming; University of North Carolina at Chapel Hill
- C. Dawson, E. Kubatko; University of Texas at Austin
- R. Kolar, K. Dresback, E. Tromble; University of Oklahoma at Norman
- J. Atkinson, L. Zevenbergen; Ayres Associates
- H. Roberts, Arcadis
- W. de Jong, Royal Haskoning
- C. Bender; Taylor Engineering
- V. Cardone, A. Cox; Oceanweather Inc.

### Methods - Winds


- H\*WIND/IOKA kinematic wind computations
  - Observational data rich
  - Validated against NDBC Buoys




### Methods - Waves

- WAM/STWAVE Wave Computations
  - Based on nested basin/local domains
  - High coastal resolution (200 m) models
  - Over 3.34 million cells (STWAVE)
  - Processes
    - Best winds (HRD H\*WIND OWI IOKA) / pressure
    - Elevations and Currents from Tides, Surge, Rivers
  - Topography
    - Lidar
  - Surface
    - NLCD/GAP wind boundary layer directional adjustment
    - NLCD/GAP based Manning n

#### WAM Model Computations and Measurements – SE Louisiana



Buoy 42040



Buoy 42007

### Models - Circulation

- ADCIRC Surge Computations
  - Based on large domain high resolution (30 to 60 m) model
  - Over 2.1 million nodes 1 second time step
  - Processes
    - Best winds (HRD H\*WIND OWI IOKA) / pressure
    - Riverine flows
    - Tides
    - Wave radiation stress gradient coupling
  - Topography
    - Lidar
  - Surface
    - NLCD/GAP wind boundary layer directional adjustment
    - NLCD/GAP based Manning n

### **SL15 Tidal Validation**

- Compare SL15 to NOAA error and NOAA to NOAA error
- Normalized Root Mean Square Constituent Amplitude Errors

| Constituent    | SL15 Computed to NOAA<br>Measured/Analyzed Errors | Estimated NOAA<br>Measured/Analyzed<br>Data Errors |  |  |
|----------------|---------------------------------------------------|----------------------------------------------------|--|--|
| K <sub>1</sub> | 0.135                                             | 0.062                                              |  |  |
| 01             | 0.125                                             | 0.065                                              |  |  |
| 0 <sub>1</sub> | 0.146                                             | 0.104                                              |  |  |
| M <sub>2</sub> | 0.119                                             | 0.041                                              |  |  |
| S <sub>2</sub> | 0.211                                             | 0.050                                              |  |  |
| N <sub>2</sub> | 0.249                                             | 0.101                                              |  |  |
| K <sub>2</sub> | 0.275                                             | 0.134                                              |  |  |

## **SL15 Tidal Validation**

- Compare SL15 to NOAA error and NOAA to NOAA error
- Average Absolute Constituent Phase Errors

| Constituent    | SL15 Computed to NOAA<br>Measured/Analyzed Errors | Estimated NOAA<br>Measured/Analyzed<br>Data Errors |  |  |
|----------------|---------------------------------------------------|----------------------------------------------------|--|--|
| K <sub>1</sub> | 7.62                                              | 5.81                                               |  |  |
| 01             | 11.84                                             | 9.38                                               |  |  |
| Q <sub>1</sub> | 10.32                                             | 6.37                                               |  |  |
| M <sub>2</sub> | 18.64                                             | 16.64                                              |  |  |
| S <sub>2</sub> | 24.19                                             | 11.75                                              |  |  |
| N <sub>2</sub> | 22.46                                             | 18.37                                              |  |  |
| K <sub>2</sub> | 60.16                                             | 11.06                                              |  |  |

## SL15 Surge Validation Katrina and Rita

| Storm   | HWM<br>Data Set          | Slope | R    | Average<br>Error (ft) | Standard<br>Deviation<br>(ft) | HWM<br>Error<br>Estimate<br>(ft) | Model<br>Standard<br>Deviation<br>(ft) |
|---------|--------------------------|-------|------|-----------------------|-------------------------------|----------------------------------|----------------------------------------|
| Katrina | USACE<br>IPET            | 1.01  | 0.97 | 0.08                  | 1.53                          | 0.60                             | 1.41                                   |
| Katrina | FEMA<br>URS              | 1.04  | 0.97 | 0.61                  | 1.42                          | 0.63                             | 1.34                                   |
| Rita    | FEMA                     | 0.98  | 0.86 | -0.03                 | 1.32                          | 0.60                             | 1.19                                   |
| Rita    | FEMA<br>w/o<br>Vermilion | 1.05  | 0.93 | 0.44                  | 1.11                          | 0.48                             | 0.91                                   |

### The Way Ahead - Resolution

- Better resolution leads to better physics (meter scale)
  - Higher resolution in rivers, channels, gulleys and critical conveyances
  - Better dissipation
  - Better meteorology, waves and circulation
  - Breaking of waves against structures
  - Finer detail in representation of surface roughness

#### The Way Ahead - Algorithms

- More efficient and accurate numerical engines allow higher *localized* resolution and therefore better physics
  - Better targeted resolution using *h-p* adaptive DG unstructured grid solutions (especially for wave transformation zones)
  - DG solutions are very accurate for advection dominated long-wave propagation problems
  - DG solutions are HIGHLY parallelizable (1000's to 10000's of processors) and are ideally suited for the next generation of Peta-scale Super-computers

#### The Way Ahead - Algorithms

- Large domains with deep ocean boundaries to avoid instabilities and inaccuracies at ocean boundaries
  - Mismatches between the interior physics and ocean boundary specification ALWAYS leads to robustness problems for good algorithms with physical damping
- Second and higher order accuracy algorithms should be implemented
  - Low order accurate schemes have truncation terms that look like large dissipation terms when the grid is coarse relative to the physical spatial gradients
  - This eliminates any hope of defining physics based sub-grid scale process closure coefficients

### The Way Ahead - Winds

- Better Atmospheric Forcing
  - Stabilize wind and pressure analysis methods; both kinematic and dynamic
  - Understand the approach to coast issues using coupled 3D NWP/ocean models
  - Rescue and homogenize historical meteorological data
  - Build a library of 20<sup>th</sup> century storms using re-analysis

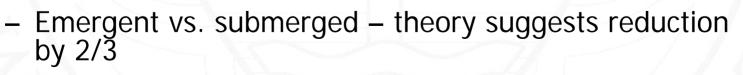
### The Way Ahead – More Physics

- More Physics Waves and Circulation
  - Improvements in vertical leveling and Lidar
  - Air Sea interaction: Wind drag should be wind wave (steepness, direction, period, age) dependent
  - Improved representation of surface roughness to better account for actual biomass and sub-grid scale features (link this in with Lidar)
  - Modified bottom stress due to wave-current interaction
  - Larger regional coupling into wave radiation stresses
  - Hydrologic rainfall models should be coupled in
  - 3D effects should be evaluated
  - Coupled sediment transport models should allow morphology to evolve

### The Way Ahead – Momentum Flux

- Air Sea interaction
  - Wave and surge models should apply same surface stresses/drag laws
  - What is the drag coefficient upper limit and at what wind speed
    - 0.0035 is used while deep water data indicates 0.002
  - How can white capping be explicitly incorporated into air-sea momentum transfer
  - Momentum transfer in highly viscous "muddy" waters
  - Formulate momentum transfer in terms of wave conditions

### The Way Ahead – Wave / Current


- Wave / current interaction
  - Wave effects on bottom stress for circulation model and current effects on bottom stress for wave model
  - Highly nonlinear waves cause set down instead of set up need to validate theory of Dean and Bender
  - Wave interaction with surge tight coupling is critical where wave setup is large percentage of set up
  - Check assumption of linear theory for wave radiation stress which works fairly well on beaches due to canceling of errors; how much are we missing due to the nonlinearity
  - Pass wave radiation stress and compute wave radiation stress gradient in the model using them
  - Apply integrated wave radiation stress gradients onto current model nodes
  - Efficient dynamic interpolators in parallel world between wave and current modules

### The Way Ahead - Waves

- Wave model improvements
  - Growth and rapidly turning winds wind input, dissipation and nonlinear wave-wave interaction formulations (DIA->TSA)
  - Wave growth on swell
  - Wind effects on breaking
  - Wave nonlinearity in shallow water
    - Efficient calculation of low frequency energy transfers (efficient parametric Boussinesq solver)
    - Low-frequency energy critical for run up and overtopping

### The Way Ahead – Bottom Friction

- Improved representation of bottom surface roughness to better account for actual biomass
  - Vegetation density, height, type
  - Seasonal changes
- Link roughness data with Lidar observations
- Feedback of water level and velocity into roughness
  - Water level to vegetation height ratio
  - Linear drag laws for very slow flows
  - Vegetation bending at high flows
- Vegetation impact on wave radiation stress





### The Way Ahead – Hydrologic Coupling

- Hydrologic rainfall routing models should be coupled into circulation models
  - Important for steep topography
  - Important for polders
  - Basin scale
  - Ditch scale
- Wave and surge into and in polders should be computed directly

#### The Way Ahead – 3D and Data

- 3D effects should be evaluated
  - Return flow produces stress in same direction as wind and therefore enhances the set up
- Data collection
  - Maintain a robust in-situ array of wind measurements
  - Deployable nearshore and marsh wave measurements
  - More survivable and dense network of deployable hydrographs in inland areas
- Validation
  - Continued, systematic validation of modeling components and model system

# Acknowledgments

- U.S. Army Engineer Research and Development Center
- U.S. Army Corps of Engineers, New Orleans District
- U.S. Army Corps of Engineers, IPET
- Office of Naval Research
- National Science Foundation
- Morphos
- Federal Emergency Management Agency