

Wind Wave Periods and Steepness from VOS Data Over the Global Ocean

Sergey Gulev and Vika Grigorieva, IORAS, Moscow

OUTLINE:

- Visually observed waves from VOS: problems of the analysis of wave periods
- Global climatology of wave periods and steepness parameter
- Changes in wave lengths and periods: are they consistent with changes in wave height?

Impact of wave periods on the extreme wave characteristics

10th Wave Hindcasting and Forecasting Workshop, Hawaii, 11-16 Nov 2007

Advance summary (meeting the requirements of Val):

 Visually observed waves from VOS: problems of the analysis of wave periods
Accuracy is low compared to wave heights, corrections are required, their proper application is possible for 1970+ period

Changes in wave lengths and periods: are they consistent with changes in wave height?

> They are qualitatively consistent, showing growing tendency in the NH oceans. However, sea steepness also grows up.

Impact of wave periods on the extreme waves Steepness of extreme waves is higher than for the moderate and even high waves

Table F2-3 Conversion for SP Prior to 1968

Seconds	Code	Interval								
5	2	5 seconds or less								
7	3	6-7 seconds								
9	4	8-9 seconds								
11	5	10-11 seconds								
13	6	12-13 seconds								
15	7	14-15 seconds								
17	8	16-17 seconds								
19	9	18-19 seconds								
21	0	20-21 seconds								
22	1	over 21 seconds								
0	-	calm or period not determined								

Table F2-4 Conversion for SP <mark>Beginning 1 January 1968</mark>							
Seconds	Code	Interval					
10	0	10 seconds					
11	1	11 seconds					
12	2	12 seconds					
13	3	13 seconds					
14	4	14 seconds or more					
5	5	5 seconds or less					
6	6	6 seconds					
7	7	7 seconds					
8	8	8 seconds					
9	9	9 seconds					
0	-	calm or period not determined					

Visual wave observations: 1856-onwards

Sea and swell periods are given in codes with the code precision 1 second for sea period and 2 sec for swell period.

Important change of the WMO Manual on codes (1963) has happened in 1968 (Supplement P-67). This change affected swell periods. Incorrect conversion implies roughly doubling of swell periods.

Visual VOS (ICOADS archive): 2 streams (1856-1958) and (1958-2005)

Wave data pre-processing and corrections (Gulev et al. 2003, JGR, 2004, GRL)

1. Correction of small wave heights: code figure "01" problem (Gulev et al. 2003)

hs = 0.5 - exp(-0.658V)2. Significant wave height $SWH = \begin{cases} (h_w^2 + h_s^2)^{1/2}, & [dir_{sea}, dir_{swell}] \in 30^\circ sector \\ max[h_w, h_s], & [dir_{sea}, dir_{swell}] \notin 30^\circ sector \end{cases}$

3. Day-time minus night-time biases (Grigorieva and Gulev 2004)

4. Separation of sea and swell in visual estimates (Carter 1988, Gulev and Hasse 1999) 2D wind-wave distributions with the JONSWAP curves for duration of 6 to 18 hours

5. Correction of the wave periods and computation of the dominant period (Gulev and Hasse 1998)

Fitting of the 2D wave-period distributions for sea and swell

6. Uncertainty of the evaluation of the true wave direction and period from the relative direction (Grigorieva and Gulev 2004)

Use of the actual ship course and velocity

<u>Correction of the systematic overestimatiuon</u> of wave periods by VOS

Gulev and Hasse (1998), Gulev et al. (2003) –

fitting of the 2D heightperiod distributions for sea and swell to the buoy data

Corrections varies from 0.4 to 1.5 seconds with the largest values in the Southern Ocean

Evaluation of the true wave period

Sea and swell separation

1. Analysis of 2D wind-wave distributions with respect to the JONSWAP curves (Carter 1988) for wind durations of 6 to 24 hours:

elimination of 0.1 to 3% of reports

2. Wave age ($a = C_p/V_{ef}$) analysis: waves reported as "sea" with a < 1.2 are attributed to sea, otherwise removed from the data set, waves reported as "swell" with a > 1.2 :are attributed to swell, otherwise removed

elimination of 0.05 to 1.5% of reports

A global VOS wave climatology (1958-2005)

http://www.sail.msk.ru/atlas/index.htm

Global climatology of wave length and steepness

20 25 30 35 40 45 50 60 70 80 90 100

4 5 6 7 8 9 10 12 14

Linear trends

SWH, sea, swell: 1958-2004

-8 -10

12 10

8

Gulev and Grigorieva 2004, GRL, 2006, J.Climate

Linear trends in sea height: 1970-2005

Whether these changes are co-ordinated with variability in wave period characteristics and if YES, HOW?

Linear trends in wind sea periods, 1970-2005

Student t-test + Hayashi reliability ratio

Linear trends in wind sea steepness, 1970-2005

 $[(h/\lambda) \times 10^2]$ per decade

Linear trends in wind sea age, 1970-2005

0.03 0.02 0.01 0 -0.01 -0.02 -0.03

Changes in 2D height-period distributions

NA winter time series

Are the extreme waves more steep?

Conclusions:

Wave periods from the visual VOS data are much more uncertain than the wave height estimates. An accurate pre-processing is possible exclusively for the period from 1970 onwards. A little can be done for the swell periods.

- Wave periods and lengths grow up (0.1 to 0.3 sec per dec) during 1970-2005. Spatial patterns are generally consistent with those for the trends in wind sea height.
- Changes in wind sea heights and periods, while consistent, result in positive trends in wave steepness with the largest increase of 0.006-0.008 per decade in the NH mid latitudes.
- Extreme seas are generally more steep compared to the moderate seas.

Highest observed seas by VOS (43 cases)

1	1960	09 Dec	11	1970	08 Dec	21	1980	10 Jan	31	1989	30 Sep	41	1999	10 Feb
2	1962	28 Jun	12	1970	22 Feb	22	1981	09 Sep	32	1990	06 Dec	42	2000	13 Dec
3	1962	02 Dec	13	1970	05 Dec	23	1982	20 Dec	33	1990	21 Dec	43	2002	17 Dec
4	1963	02 Feb	14	1973	22 Nov	24	1983	03 Dec	34	1991	26 Jan			
5	1966	21 Dec	15	1973	09 Dec	25	1983	16 Dec	35	1992	16 Feb			
6	1966	06 Dec	16	1974	14 Dec	26	1985	18 Jan	36	1992	06 Mar			
7	1966	26 Dec	17	1975	10 Dec	27	1985	11 Dec	37	1993	04 Dec			
8	1967	16 Jan	18	1977	22 Jan	28	1985	10 Feb	38	1996	06 Jan			
9	1968	05 Feb	19	1978	08 Jan	29	1988	01 Dec	39	1996	10 Dec			
10	1969	04 Dec	20	1978	05 Dec	30	1989	20 Nov	40	1998	29 Dec			