Nearshore Wave Simulation in a Coupled Hydrodynamic and Wave Model System to Evaluate Storm Surge in Coastal Louisiana

Christopher J. Bender, Ph.D., P.E.
Taylor Engineering, Jacksonville, FL

Jane McKee Smith, Ph.D., P.E.
Engineer Research and Development Center, Coastal and Hydraulics Laboratory, Vicksburg, MS
Motivation for Study

• Improve and test MORPHOS technology for hurricane wave and surge modeling
• Estimate storm surge in coastal Louisiana for alternative design and FEMA mapping
• Estimate wave conditions to define the coastal wave setup, runup, and overtopping
• Couple time-dependent, 2-dimensional meteorology, hydrodynamics, and wave forcing
• Provide boundary conditions and performance measures for levee designs and coastal restoration alternatives
Methodology for Study

• Modeling Methodology:
 – Wind modeling (H*wind blended w/ NCEP using IOKA)
 – Gulf of Mexico- and regional-scale wave modeling (WAM)
 – Surge modeling (ADCIRC)
 – Nearshore wave modeling (STWAVE)
 – One-way and two-way (for nearshore waves and surge) interactions

• Nearshore wave modeling applied several nearshore grids to encompass coastal area

• Employ half-plane and full-plane STWAVE models to provide required resolution and grid orientation
Initial Summary and Conclusions

• Coupled wave and surge modeling was significant step forward for FEMA and Corps hurricane surge estimation

• In spite of large domains, high resolution, and heavy computation load, storms suites were executed efficiently

• Future:
 – Improve efficiency and resolution
 – Validation (setup and frictional losses)
 – Tighter coupling
 – Texas coast
Detailed STWAVE Methodology

- Spatial and temporal nesting from regional wave model (WAM) to STWAVE grids with 200-m resolution
- Bathymetry and friction coefficients interpolated from ADCIRC
- Surge and wind interpolated from ADCIRC at every time snap
- STWAVE simulated nearshore waves at half-hourly intervals (93 time steps per hypothetical storm, approximately 500 storms)
- Gradients of radiation stress interpolated from STWAVE onto the ADCIRC mesh to drive spatial and temporal variation of wave-induced water level change and currents in ADCIRC
Detailed Methodology

STWAVE Domains

5 grids, 200-m resolution, 3.34 million cells
Study Challenges

- Study domain: large area with low-lying coastal marshes, complex nearshore features, levees and Mississippi River-related features
- Storm forcing conditions: extreme wind speeds, rapidly evolving winds, and large surge levels require robust models and coupling mechanism
- Lack of field data to validate waves and wave setup in study domain
- Study timeline, study domain, and model resolution required execution on parallel-computing platforms and resulted in enormous file sizes
STWAVE Additions and Improvements

• Study parameters require advancements in STWAVE model
 – Variable wind forcing
 – Variable storm surge levels
 – Development of several formulations to account for bottom friction-induced wave dissipation
 – Application of interpolation algorithms to develop coarse grid offshore spectra to nearshore grid
 – Parallel processing capability
 – Calculation and output of low-frequency weighted mean wave period for design
Results: Wave Animations

- Storm 026 in 152-storm suite, Katrina-like path
- Min Press. = 900 mb
- Radius = 14.9 nm
- Forw. Velocity = 11 kt
- Holland B = 1.27
Results: Wave Animations; Storm026, Hmo
Results: Wave Animations; Storm045, Hmo
Results: Wave Time Series

- Extract results for certain points in grid.
Results: Wave Time Series

- Time series shows progression of waves
Results: Wave Animations; Storm045, Wave Setup
Results: Wave Time Series inc. Setup

Point 2: near MS delta near offshore boundary
Results: Wave Time Series inc. Setup

Point 6: landward of Barrier Islands
Results: Applications

• STWAVE data provide radiation stress gradients necessary to develop wave-driven water level increase (wave setup) and currents in ADCIRC

• Analysis of STWAVE data provides statistical definition of wave values in study area (.i.e. 100-year wave height)

• STWAVE with new functionality allows model calibration to surge, vegetation, and bottom friction effects when field data available
Conclusions and Future Work

• Coupled wave and surge modeling was a significant step forward for FEMA and Corps hurricane surge estimation.
• In spite of large domains, high resolution, and heavy computation load, storms suites were executed efficiently.
• Future:
 – Improve efficiency and resolution
 – Validation (setup and frictional losses)
 – Tighter coupling
 – Texas coast
Acknowledgements

• Funding support was provided by the System-Wide Water Resources Program, FEMA, and US Army Corps of Engineers, New Orleans District

• Additional contributors included:
 – Vince Cardone & Andrew Cox, OceanWeather, Inc.
 – Ty Wamsley, Bob Jensen, and Alison Grzegorzewski, CHL
 – Joannes Westerink, Notre Dame
 – John Atkinson, Ayres Associates
 – Allison Bridges, Hande Caliskan, Jon Hall, Michael Kabling, Bill Miller, Ashley Naimaster, Kristen Odroniec, Taylor Engineering