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• is traditionally regarded as a tuning knob
• recent experimental advances brought much more certainty into  
physics of whitecapping dissipation
• Threshold behaviour in terms of the wave spectrum: 
• Two-phase behaviour: dissipation at smaller scales depends on 
breaking/modulation at larger scales
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• At high wind speeds, dissipation depends on the wind
• At high frequencies (cumulative term dominates), turbulent viscosity 
is more significant than breaking dissipation
• At low spectral densities (below the threshold), dissipation may 
persist without breaking, but has to be described by separate terms

Little if any new experimental knowledge implemented in the models
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passive acoustic methods have a potential advantage
+ instrumentation is cheap, robust and easy to maintain

+ hydrophones are deployed below the surface and escape distructive
power of breaking waves

+ can be operated on long-term or regular basis

two passive acoustic methods to study spectral dissipation
- segmenting a record into breaking and non-breaking segments
- using acoustic signatures of individual bubble-formation events



the photo is curtesy of Fabrice Ardhuine, France

• are we prepared to describe the surface like this?

• the description is necessary if we want to forecast the waves
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Represents the temporal and spatial evolution of Represents the temporal and spatial evolution of 
the wave energy spectrum E(k,fthe wave energy spectrum E(k,f,θ,θ))

Stot – all physical processes which affect the energy transfer
Sin – energy input from the wind
Sds – dissipation due to wave breaking
Snl – nonlinear interaction between spectral components
Sbf – dissipation due to interaction with the bottom



Lake George - Canberra
20 km x 10km
• uniform finite water depth (0.3m - 2.2m)
• steep waves fp > 0.3 Hz
• strongly forced waves  1 < U/cp < 8
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Instrumentation

Swc - White-cap dissipation

• 3 Acoustic Doppler Current Meters

• Doppler spatial current profiler

• Hydrophone

• Video images

• Manual tagging
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recording the breaking bfnldsin SSSS
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passive acoustic methods have a potential advantage
+ instrumentation is cheap, robust and easy to maintain

+ hydrophones are deployed below the surface and escape destructive 
power of breaking waves

+ can be operated on long-term or regular basis




Sds Spectrogram methodSpectrogram method
Segmenting the record
- 50% breaking rate
- trains of dozens of breaking waves followed by dozens of non-breaking waves
- stationary, fully-developed, constant depth case
- U10 = 20 m/s, fp = 0.4 Hz
- succession of breaking waves considered a train of incipient breakers
- succession of non-breaking waves considered a train of broken waves
- segments are from half a minute to a few minutes long
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Cumulative effect

Young  & Babanin, JPO, 2006
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Directional dissipation
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- individual bubbles oscillate volumetrically: ω0~1/R
- bubbles passively emit sound at the natural frequency when formed or collapse
- individual bubbles ring at frequencies 0.5-10 kHz
- ringing lasts 10-20 cycles
- what humans perceive as a continuous noise is many discrete events
- sufficiently short time window triggered on a signal peak contains information 
about the bubble
- appropriately thresholded acoustic data generates statistic in time on number of 
bubbles and bubble size
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Frequency distributions of breaking probability 
Breaking severity

Manasseh et al., JTec, 2006
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Cumulative effect
Dependence on the wind

two-phase behaviour of spectral dissipation:
- linear dependence of Sds on the spectrum at the peak
- cumulative effect at smaller scales

bT depends on the wind for U10 > 14 m/s
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Frequency distributions of breaking probability 
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Saturation threshold
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DissipationDissipation Sds

The induced dissipation can be caused by forced breaking of shorter waves due 
to the dominant breaking/modulation, or by enhanced turbulent viscosity due to 
the dominant breaking, or both. 

comparing with the Melville & Matusov dissipation based on distributions of 
the breaking crests
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importance of the turbulent viscosity 
contribution to the cumulative 
dissipation is evident
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• spectral dissipation was approached by two independent means 
based on passive acoustic methods
• if the wave energy dissipation at each frequency were due to 
whitecapping only, it should be a function of the excess of the 
spectral density above a dimensionless threshold spectral level,
below which no breaking occurs at this frequency. This was found to 
be the case around the wave spectral peak (dominant breaking)
• dissipation at a particular frequency above the peak demonstrates a 
cumulative effect, depending on the rates of spectral dissipation at 
lower frequencies
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• dimensionless saturation threshold value of  
should be used to obtain the dimensional spectral threshold Fthr(f) at 
each frequency f
• comparisons indicate that the turbulent viscosity becomes significant 
when the cumulative term dominates
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