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MOTIVATION
WAVE MODELING IN SHALLOW WATER

Common thinking:
a) FOUR-WAVE RESONANT INTERACTIONS IN DEEP /INTERMEDIATE WATER

b) THREE -WAVE INTERACTIONS (NEVER RESONANT) IN SHALLOW WATER
i) computation of triplets
ii) deterministic modeling (Boussinesq or higher order)
iii) evolution equations for spectra and bi-spectra based on Boussinesq-
like equations

APPARENTLY A “PHASE TRANSITION” OCCURS BETWEEN THE DEEP AND
SHALLOW WATER!

i) Are the four-wave interactions relevant in shallow water?

ii) Is there a relation between the Boussinesq equations and the four-wave
resonant interactions?

ili) Does an irreversible transfer of energy occur in flat-bottom shallow water
waves?



METHODOLOGY

Theoretical analysis of the oldest, flat-bottom shallow water

model:
THE BOUSSINESQ EQUATIONS

nt+V°[(n+h)u]=O

2
ut+u-Vu+gVn—%VV-ut =0



SUMMARY OF THE RESULTS

i) A FOUR-WAVE HASSELMANN-LIKE EQUATION (BOUSSINESQ
KINETC EQUATION or BOUSSINESQ S,,) HAS BEEN DERIVED FROM
THE BOUSSINESQ EQUATIONS

11) BOUSSINESQ KINETC EQUATION CORRESPONDS TO THE
ARBITRARY DEPTH HASSELMANN EQUATION WHEN THE LIMIT OF
SMALL DEPTH IS PROPERLY TAKEN

1) THE ESTIMATED TIME SCALE OF THE FOUR-WAVE NONLINEAR
INTERACTIONS IN SHALLOW WATER IS
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iv) DIRECT ENERGY CASCADE SOLUTIONS ARE FOUND TO BE OF THE
FORM OF E (k) ~ k™*'* (CONSITENT WITH ZAKHAROV EJMB/FLUIDS 1999)




v) RESULTS ON WAVE SPECTRA CASCADE ARE CONFIRMED BY
DIRECT NUMERICAL COMPUTATIONS OF THE BOUSSINESQ
EQUATIONS.

vi) EXPERIMENTAL EVIDENCE OF POWER LAW FOR INFROGRAVITY
WAVES (see also Smith and Vincent 2003, Kaihatu et al. 2007 for shoaling
waves)
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OUTLINE
* Derivation of the Boussinesq Kinetic equation

* Discussion of the Boussinesq kinetic equation and its relation to
the Hasselmann equation

* Power law solutions of the Boussinesq Kinetic equation
* Numerical simulations

* Some experimental data



Derivation of the Boussinesq kinetic equations

nt+V°[(n+h)u]=O

2
ut+u-Vu+gVn—%VV-ut =0

i) WRITE THE EQUATION IN FOURIER SPACE AND
INTRODUCE THE COMPLEX AMPLITUDE
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a(k,t) = o(K,1)
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iil) USE OF THE MULTIPLE SCALE EXPANSION:

) 2
eIntroduce a slow time scale: T=E€ 1

¢ .ook for a solution of the form:

a (t,7)=b (t,7) + b’ (t,1) + b7 (1,T) + ...

ob, . : "
(9—t0 * lwobo = _lngTO(f%bl b2b36(ko + kl ~ kz - k3)dk123



Narrow band limits of the Boussinesq-Zakharov
equation

* Long crested case (one dimensional propagation):

Defocousing Nonlinear Schroedinger equation in shallow water
* Weakly two-dimensional case:

Shallow water limit of the Davey-Stewartson

BOTH EQUATIONS ARE INTEGRABLE!!

NO ENERGY TRANSFER!!



iii) STATISTICAL DESCRIPTION OF THE
SHALLOW WATER ZAKHAROV EQUATION

Hypothesis:
i) Homogeneity
il) Quasi Gaussian approximation

oN 2 1 1 1 1
§—t0= f(To(gé) N0N1N2N3(No ' N, ) N, ) N3)5(w0 + 0, = 0, = 0;)0(k, + Kk, — K, ~K;)dk,;

where
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Relation with the Hasselmann equation
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NONLINEAR TIME SCALE

oN 2 1 1 1 1
§—t0= f(zggé) N0N1N2N3(No ' N, ) N, ) N3)6(w0 + 0, = 0, = 0;)0(k, + K, —Kk, ~K;)dk,;

Z/TNL ~ T(B))Z CU_Z N2k4

with T®~ k*/h
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Power law solutions of the Boussinesq kinetic equation

Hypothesis: existence of an equilibrium range in Fourier space
where there is a constant flux of energy, independent of &

Dimensional analysis of the Kinetic equation
AN/At ~ TP ' N°k* with T~ kP/h

Flux of energy I1I:
IT-k* AE/At~ N°k'°

must be independent of k, therefore

NI 103 o0 |3
(in agreement with Zakharov 1999)



Numerical simulations of Boussinesq equations
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EFFECTS OF REGULAR DISCTRETIZATION:
LACK OF EXACT RESONANCES
Example:

h=1m, k,=0.2 m"
Ak.=0.01 m”
Ae,=0.001 m’
k= k, =k,

IN A 256x256 GRID THERE ARE NOT EXACT
RESONANCES!
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Some comparison with experimental data (tfrom Smith and Vincent JGR 2003)

 SMITH AND VINCENT: EQUILIBRIUM RANGES IN SURF ZONE SPECTRA
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Figure 3. Example of Toba equilibrium range (» = —5/2) fit to lab data (d = 18.3 cm).



Some comparison with experimental data (from Kaihatu et al. JGR 2007)
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Bowen and Kirby 1994 Case B - slope of log wavenumber spectra — Zakharov (x) Toba ()
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Figure 2. Site map showing the boundaries of Currituck Sound nearby the instrument platform
(solid circle labeled “sled”). The sound is 1solated from the Atlantic Ocean to the east by the
barrier 1sland of North Carolina’s Outer Banks. At the nearest points, the sled 1s about 1 km from
the east side of the sound and about 6 km from the west side. A broad channel of about 2.5-m
depth runs along the long axis of the sound in the vicinity of the sled. This channel narrows
considerably to the north. The opening to the south, representing an azimuthal arc of about 20
deg from the sled location, leads to the larger, deeper Albemarle Sound.
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THREE WAVE INTERACTIONS CAN BE ASYMPTOTYCALLY
RESONANT

k]‘l' k2: k3
C()]+ C()2~a)3

If k, is close to k,then

W+ Wy 05~y k- ky)(kh)’~0



CONCLUSIONS

* The Boussinesq kinetic equation is equivalent to the shallow water
limit of the Hasselmann equation

e Four-wave resonant interaction can be relevant in shallow water

* Power law solutions of the Boussinesq kinetic have been confirmed
by numerical simulations

* There is some evidence that this solution can be observed in the
surf-zone

e Infragravity waves in Currituck Sound show also power law k™~



