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1 Introduction

Stories of monstrous waves have been told by sailors (Draper, 1965). For example, the
captain of cargo vessel Junior reported a wave estimated to be 100 feet high and the famous
reliable report was that of the wave encountered by U.S.S. Ramapo in the North Pacific
in 1933; that wave was estimated to be 112 feet high. There are many more reports of
encountering similar waves in the history of the seas. Evidence of these extreme waves has
become increasingly substantial during the last decade, mainly because of the increase in
the number of measurement locations and the increased accuracy of field observations. Also,
while in the past quality control was so strict that freak waves were regarded as an outlier
and therefore their observation was ignored in the official records, nowadays a more relaxed
quality control procedure is followed. Klinting and Sand (1987) reported several extreme
wave events, called freak waves, recorded in the North Sea. More evidence of freak wave
generation in the real ocean was found by analyzing field data of the North Sea (Stansell
et al., 2003; Guedes Soares et al., 2003), the Sea of Japan (Yasuda and Mori, 1997; Yasuda
et al., 1997) and the Gulf of Mexico (Guedes Soares et al., 2004).

Klinting and Sand (1987) introduced a definition of a freak wave that consists of three
rules: .

1. It has a wave height higher than twice the significant wave height.

2. Its wave height is larger than 2 times of the fore-going and the following wave heights.

3. Its wave crest height is larger than 65% of its wave height.

In the course of time the above three conditions have been relaxed into only the first
condition and it is this condition that is generally used as a freak wave definition (Sand
et al., 1990).

There are two essential arguments for freak wave research. The first important thing is
understanding the freak wave generation mechanisms. The above mentioned definition of
freak wave is fairly general, therefore, there are several mechanisms to explain why extreme
wave events have occurred at sea.
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The second aspect of the problem is to establish a reliable statistical model for freak
wave occurrence, e.g. which aspects of freak waves can be predicted. A freak wave is one or
a few large waves in a wave train and therefore it includes huge statistical sensitivity from
mathematical point of view. Moreover, the life of such extreme wave is a transient and the
life time of such event may be fairly short. Therefore, the specific freak wave population
should be clarified rather than chasing individual wave profiles, although no doubt we learn
from observing these individual waves. For given population of freak waves, it is possible
to estimate how often waves of any given size will occur.

In the last decades a lot of effort in the oceanographic community has been dedicated
to the study of extreme events in the ocean. Nowadays, it is accepted that at least four
mechanisms are responsible for the formation of extreme waves. The first one is just linear
superposition of waves; in this case the wave height probability distribution obeys, in the
limit of the narrow-band approximation, a Rayleigh distribution (Longuet-Higgins, 1952);
corrections due to finite spectral band width have been obtained (Næss, 1985; Boccotti,
1989; Tayfun, 1981). Wave crest statistics can be determined by using the second order
theory developed by Longuet-Higgins (1963). In the narrow-band approximation, the prob-
ability distribution for wave crests has been found in Tayfun (1980) (for finite band-width
see Fedele and Arena (2005)). The second mechanism is the interaction of waves with
currents. The third mechanism, the one that will be mainly discussed here, concerns the
generation of extreme events as a result of the modulational instability, i.e. a four wave
quasi-resonant interaction process (e.g. Yasuda et al., 1992; Yasuda and Mori, 1994; Ono-
rato et al., 2001; Janssen, 2003). This mechanism becomes relevant for long crested waves;
in the case of waves with directional spreading it is still not clear what is the role of the
modulational instability and consequent formation of extreme events. Numerical results in
the freely decaying case (Onorato et al., 2002; Socquet-Juglard et al., 2005) have shown
that the addition of finite directional spreading decreases the probability of formation of
extreme waves, leading to wave crests distributed according to the Tayfun distribution
(Socquet-Juglard et al., 2005). The fourth mechanism is related to crossing-sea states, i.e.
two sea-systems, for example a swell and a wind sea, with different directions that coexists
in some region of the ocean.

In the present paper we will make a detailed comparison between experimental data
from the Marintek wave tank facility, observed data and theory in Mori and Janssen (2006)
of a number of statistical parameters, namely, the kurtosis evolution owing to the four wave
interactions, the wave height distribution and the maximum wave height distribution. The
paper is organized as follows: in section 2 a summary of the results derived in Mori and
Janssen (2006) is given, in section 3 the experiments and field observations are described, the
comparison of experimental, field data and theory is reported in section 4. The results give
a universal theory of extreme wave generation as a consequence of four wave interactions
in a unidirectional wave train.
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2 Theoretical Background

2.1 Quasi-resonant four wave interactions and high-order moments

As previously mentioned, the modulational instability is a quasi-resonant interaction pro-
cess, i.e. wave numbers and frequencies satisfy the following conditions:

�k1 + �k2 − �k3 − �k4 = 0 and ω(�k1) + ω(�k2) − ω(�k3) − ω(�k4) ≤ ε2, (1)

here ε is a small parameter which corresponds to the steepness in deep water waves. More
in particular, the modulational instability takes place when two wave numbers are the same
�k1 = �k2 and �k3 and �k4 are two side bands separated from �k1 by Δk, which should be small in
order to satisfy the condition (1). The standard kinetic equation that describes the evolution
of the wave spectrum in time, Hasselmann (1962), is formally only valid for large times,
O(ε−4ω−1

0 ), and for exact resonances; its extension to quasi-resonant interactions has been
obtained in Janssen (2003) where a kinetic equation, which should be also valid on the time
scale of the modulational instability, has been derived (see also Annekov and Shrira, 2006).
If one then considers the evolution of higher order moments such as the kurtosis, it turns
out that the quasi-resonant interactions are responsible for deviations from Gaussian values.
In Janssen (2003) the explicit relation between nonlinear interactions of free waves and the
fourth order moment of the surface elevation η(�x, t) in deep-water has been investigated.
The result is

κ40 =
〈η4〉
m2

0

− 3

=
12

g2m2
0

∫
d�k1,2,3,4T1,2,3,4

√
ω1ω2ω3ω4 δ1+2−3−4Rr(Δω, t)N1N2N3 (2)

where m0 is the variance of the surface elevation η, κ40 is the fourth order cumulant of the
surface elevation (equals to kurtosis minus 3), g is the acceleration of gravity, k is the wave
number, ω is the angular frequency, N is the wave action spectral density, T1,2,3,4 is the
coupling coefficient in the Zakharov equation (see Krasitskii (1994) for its analytical form),
δ1+2−3−4 = δ(�k1+�k2−�k3−�k4), d�k1,2,3,4 = d�k1d�k2d�k3d�k4 and Rr = (1−cos(Δωt))/Δω is the
resonance function. In the limit of large times Rr → P/Δω , where Δω = ω1 +ω2−ω3−ω4

and P denotes the principle value of the integral to avoid singularity in the integral.
In the narrow-band approximation, assuming that the spectrum E(ω) has a Gaussian

shape:

E(ω) =
m0

σω

√
2π

e−
1
2
ν2

, (3)

where ν = (ω − ω0)/σω and σω is the spectral band-width, the integral in (2) for large times
becomes:

κ40 =
24ε2

Δ2
P

∫
dν1,2,3

(2π)3/2

e−
1
2
[ν2

1+ν2
2+ν2

3 ]

(ν1 + ν2 − ν3)2 − ν2
1 − ν2

2 + ν2
3

, (4)

where ε = k0
√

m0 is the steepness parameter and Δ = σω/ω0 is the relative spectral band-
width. The integral can be evaluated analytically to obtain:

κ40 =
π√
3
BFI2 (5)

3



10th Wave Workshop Mori, Janssen and Onorato

where BFI is defined as in Janssen (2003)

BFI =
ε

Δ

√
2. (6)

Eq. (5) is the simplified prediction equation of the kurtosis of the surface elevation assuming
a narrow-band, unidirectional wave train, but the full description requires the evaluation of
a six dimensional integral in wave number space, Eq. (2).

2.2 Wave height and maximum wave height distribution

In order to include nonlinear effects in the wave height distribution function giving possible
deviations from the Rayleigh statistics, the standard approach is to use the Edgeworth series
developed at the beginning of the last century (e.g.Edgeworth, 1907). The theory for wave
height is described in Tayfun and Lo (1990); Mori and Yasuda (2002); Mori and Janssen
(2006). The resulting distribution has been named the Modified Edgeworth Rayleigh (MER)
distribution. The MER wave height and exceedance wave height distribution are given by
Mori and Janssen (2006):

p(H)dH =
1
4
He−

1
8
H2

[1 + κ40AH(H)] dH, (7)

PH(H) = e−
1
8
H2

[1 + κ40BH(H)] , (8)

where H is the wave height normalized by ηrms =
√

m0, κ40 is defined in Eq. (4) and AH(H)
and BH(H) are polynomials defined as

AH(H) =
1

384
(
H4 − 32H2 + 128

)
, (9)

BH(H) =
1

384
H2

(
H2 − 16

)
. (10)

Note that these distributions describe the deviation from linear statistics under the hy-
pothesis of a narrow–band, weakly nonlinear wave train. Second order contributions, which
are important for the distribution of wave crests, can be included by using a Tayfun-like
approach (Tayfun, 1980) (see also Tayfun (2006)).

Using Eqns. (7-8) the probability distribution function pm and the exceedance proba-
bility Pm of maximum wave height can be given as a function of the fourth cumulant of the
surface elevation κ40 and the number of waves N recorded in the wave train,

pm(Hmax) =
N

4
Hmax e−

H2
max
8 [1 + κ40AH(Hmax)]

× exp
{
−Ne−

H2
max
8 [1 + κ40BH(Hmax)]

}
, (11)

Pm(Hmax) = 1 − exp
{
−Ne−

H2
max
8 [1 + κ40BH(Hmax)]

}
, (12)

where Hmax is the maximum wave height normalized by ηrms. In Mori and Janssen (2006) a
comparison of the theoretical wave height distribution with field data have shown qualitative
agreement. For κ40 = 0, results are identical to the ones following from the Rayleigh
distribution.
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Note that simpler looking expressions for the wave height and maximum wave height
distribution may be obtained by normalizing with the significant wave height Hs = 4

√
m0.

We record these expressions for completeness. Hence, normalizing with the significant wave
height, Eq. (7)-Eq. (12) become

p∗(H∗)dH∗ = 4H∗e−2H∗2
[1 + κ40A

∗
H(H∗)] dH∗, (13)

P ∗
H(H∗) = e−2H∗2

[1 + κ40B
∗
H(H∗)] , (14)

A∗
H(H∗) =

1
3

(
2H∗4 − 4H∗2 + 1

)
, (15)

B∗
H(H∗) =

2
3
H∗2 (

H∗2 − 1
)
. (16)

while the maximum wave height distribution and the exceedance probability becomes

p∗m(H∗
max) = 4NH∗

max e−2H∗2
max [1 + κ40A

∗
H(H∗

max)]

× exp
{
−Ne−2H∗2

max [1 + κ40B
∗
H(H∗

max)]
}

, (17)

P ∗
m(H∗

max) = 1 − exp
{
−Ne−2H∗2

max [1 + κ40B
∗
H(H∗

max)]
}

. (18)

where H∗
max is the maximum wave height normalized by Hs.

If one defines a freak wave as a wave whose height Hfreak ≥ 2Hs, we obtain from
Eq. (12) or Eq. (18) the following simple formula to predict the occurrence probability of a
freak wave as function of N and κ40,

Pfreak = 1 − exp [−βN(1 + 8κ40)] (19)

where β = e−8 is constant. The term 8κ40 is the nonlinear correction to linear theory for
the maximum wave height distribution. Thus, the nonlinear correction to the maximum
wave height depends on κ40.

To summarize the above discussion, we can state that the quasi-resonant four wave in-
teractions introduce deviations from linear expectations of the statistics of surface elevation;
in particular, for weakly nonlinear, narrow-banded and long-crested wave trains, the kurto-
sis evolves according to Eq. (2). In the narrow-band approximation, the kurtosis is related
to the BFI; the tail of wave height distribution depends on the kurtosis/BFI and increases
as the kurtosis increases. Finally, the maximum wave height distribution depends on both
the number of waves in the wave train (record length) and the kurtosis, see Eq. (11).

3 Experimental and Field Data

The experiment was carried out in the long wave flume at Marintek; experimental details
and some data analysis can be found in Onorato et al. (2006). The length of the tank
is 270 m and its width is 10.5 m; the depth is 10 meters for the first 85 meters and 5
meters for the rest of the flume. For the wavelengths considered in the experiments, the
deep water conditions apply through the tank. The wave surface elevation was measured
simultaneously by 19 probes placed at different locations along the flume. The sampling
frequency for each probe was 40 Hz. The capacitance wave gauges were used for the surface
displacement measurements. A view of the flume with the location of the probes is shown
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Figure 1: Sketch of the wave tank facility at Marintek and location of wave probes

in Figure 1. JONSWAP random wave signals where generated at the wave maker as sums
of independent harmonic components, by means of the inverse Fast Fourier Transform of
complex random Fourier amplitudes. These were prepared according to the “random phase
approach” by using random Fourier amplitudes as well as random phases. This implies
that, due to the central limit theorem, κ40 should ideally be equal to zero and μ4 equal
to 3. As mentioned in the previous section, the maximum wave height depends on the
number of waves in the wave train in both linear and nonlinear theory as shown in Eq. (11).
Hence, the large number of waves is fundamental for the convergence both of the tail of
the PDF of wave height and the maximum wave height. Therefore, 5 different realizations
with different sets of random phases have been performed. The duration of each realization
was 32 minutes. The total number of wave heights (counting both up-crossing and down-
crossing) recorded for each spectral shape at each probe was about 12800 waves. This is a
sufficient number of waves to check the sensitivity of the maximum wave height distribution
on the number of waves. The spatial evolution of wave statistics is described in Onorato
et al. (2006).

The field observations were originally collected by the Tokyo Electric Power Company
using an ultra sonic wave gauge at a depth of 30m, off the coast of the Pacific Ocean. The
length of each record was 20min and the data were collected every hour from March 1 to
the end of June in 2001. The wave statistics such as Hmax, H1/3, T1/3, N , μ3, and μ4

were operationally calculated and archived. Note that the water depth of 30m is relatively
shallow water. Therefore, to eliminate shallow water effects1, the data are excluded if the
dimensionless water depth kph is less than 2.0 (it corresponds to T1/3 ≥ 8s). The total
number of valid data was about 2546. The detailed analysis of the data is described in Mori
and Janssen (2006).

4 Comparison of observations and theory

The consequences of the maximum wave height distribution (Eq. (11)) are in general hard
to verify, not only because Eq. (11) depends on the number of waves considered but also
because nonlinear effects are included in the distribution via the kurtosis which requires a
large number of data to converge. Nevertheless, the present laboratory data set seems to be

1in the context of the nonlinear Schrödinger equation there is only nonlinear focusing for kph > 1.36
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suitable for such comparison (as previously described, the time series are very long). Figure
2 shows the comparison of the maximum wave height distribution from observations from
the lab and the field with Eq. (11) for N = 150. The filled circles • denote the laboratory
data, the filled triangle � denote the field data, the maximum wave height distribution
from Rayleigh theory (denoted Rayleigh Hmax distribution hereafter) is represented by the
dotted line, while Eq. (12) (denotes MER Hmax distribution hereafter) corresponds to the
solid line. To obtain a distribution of maximum wave height, each laboratory record is
divided in smaller time series containing each 150 waves; the maximum wave heights are
then collected from the shorter time series. The field data were treated slightly differently:
time series were labelled as having a particular N value and μ4 value when the actual values
matched N ± 25 and μ4 ± 0.1. There were insufficient number of samples for the larger
kurtosis case (Figure 2(c)) In Figure 2 (a) the comparison between theory and experiment
is shown for linear wave condition (μ4 = 3). The peak of the observed maximum wave height
distribution is larger than the Rayleigh Hmax distribution and the MER Hmax distribution
with μ4 = 3.06 but the observed distribution is more narrow (we ascribe this difference
to effects of finite width of the spectrum). As waves propagate through the flume, the
nonlinear dynamics results in an increase of the kurtosis and therefore the maximum wave
height distribution of the laboratory data departs from the Rayleigh distribution (Figure
2 (a) → (c)) and the peak of the observed distribution shift to larger wave heights. While
the Rayleigh Hmax distribution is independent of the kurtosis, the MER Hmax distribution
follows decently the behavior of the experimental data. The MER Hmax distribution seems
to reproduce reasonably well both the laboratory and field data; for very small kurtosis,
it overestimates the experimental data and for large kurtosis it slightly underestimates the
data.

Here we also discuss the general behavior of the probability density function of maximum
wave height in the nonlinear wave field, by plotting the expected value of the maximum
wave height, indicated by <>, as a function of μ4 and N , see Figure 3. The number of
waves in the field data set could not be fixed as in the analysis of the laboratory data, thus
field data were classified into each bin of μ4 and N . In this Figure we show the numerically
integrated value of Eq. (11) and the ensemble average of the experimental and field data.
The 〈Hmax/H1/3〉 according to the Rayleigh theory corresponds to Figure 3 with μ4 = 3.
The dependence of 〈Hmax/H1/3〉 on μ4 and N is clear both from the laboratory and field
data and from Eq. (11). Overall, 〈Hmax/H1/3〉 of the laboratory data is smaller than the
MER Hmax distribution and 〈Hmax/H1/3〉 of the field data is larger than the MER Hmax

distribution. The theoretically predicted 〈Hmax/H1/3〉 is overestimated compared to the
laboratory data but it agrees with the laboratory data in a qualitative sense. 〈Hmax/H1/3〉
from the field data monotonically increases with increasing μ4, but for high kurtosis values
the theoretically estimated value of 〈Hmax/H1/3〉 is lower.

Finally, Figure 4 shows the comparison of freak wave occurrence frequency Pfreak ob-
tained from the laboratory data and theory. For small kurtosis waves, μ4 < 3.5, the freak
wave occurrence frequency estimated by the MER Hmax distribution is larger than what
is obtained from the laboratory data. However, the laboratory data show a rapid growth
of the occurrence probability of freak waves for larger kurtosis, μ4 > 3.5. This discrepancy
between theory and laboratory data is presently not well-understood.

7



10th Wave Workshop Mori, Janssen and Onorato

5 Conclusion

In the present paper a detailed comparison between laboratory data, consisting of a large
number of waves, field data and the theoretical expectation described in Mori and Janssen
(2006) have been discussed. As the kurtosis increases, the probability of large amplitude
waves also increases. Comparison of the MER distribution for maximum wave height with
laboratory data and field data has shown a much better agreement than when the maximum
wave height distribution obtained from Rayleigh distribution is used. Overall, the theory
originally described by Edgeworth at the beginning of the last century, combined with
four-wave, quasi-resonant interaction theory and wave statistical theory seems to be an
interesting approach for predicting extreme waves in long crested conditions. We should
emphasize here that the theory does not need any empirical, ad-hoc parameter.

Here, we showed how accurate theoretical freak wave prediction is for given kurtosis
value. There is still remaining the prediction of kurtosis from the spectra. In addition, in
real sea states directional effects are important. In this paper we have concentrated on the
idea of extreme wave generation owing to four wave interactions in a unidirectional wave
train. Presently we are extending the theory to including directional wave effects. This will
be discussed in near future.
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Figure 2: Comparison of maximum wave height distribution Hmax/ηrms with N = 150 (•:
laboratory data, �: field data, solid line: MER Hmax distribution, dashed line: Rayleigh
Hmax distribution)
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Figure 3: Comparison of 〈Hmax/H1/3〉
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Figure 4: Comparison of occurrence probability of freak wave
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